
P. D. Kamala Jayanthi¹, * P. Saravan Kumar ¹ and Meenal Vyas¹

¹Division of Entomology and Nematology, ICAR-Indian Institute of Horticultural Research, Bangalore, India 560089

*Corresponding author Email: jaiinsect@gmail.com, kamalajayanthi.pd@icar.gov.in

Abstract

Natural predator-prey interactions in the insect world provide interesting insights into how female herbivores avoid ovipositing in places where a predator’s presence can be perceived. Several insects show such innate behavioral traits that can be harnessed to formulate safe pest management strategies in agriculture. Using customized oviposition assays we investigated the innate oviposition avoidance behavior of the oriental fruit fly, *Bactrocera dorsalis*, a frugivorous pest. Fruit flies preferred to lay eggs in a test region smeared with γ-Octalactone (an oviposition stimulant used as a positive control) over a test region smeared with a mix of γ-Octalactone and the headspace volatiles of the weaver ant, *Oecophylla smaragdina*, a generalist predator in orchard ecosystems. A combination of the electrophysiologically active odor cues *n*-undecane and *n*-tridecane from the weaver ant’s headspace volatiles was found to deter female fruit flies from ovipositing. Using these behavior-modifying chemicals in a blend as a pre-harvest spray could potentially prevent egg-laying by oriental fruit flies in ready to harvest fruits.

Keywords: Weaver ant, fruit fly, Tephritidae, oviposition deterrent, body volatiles
Introduction

The body odor of a predator is known to elicit a range of innate behaviors in the prey that allow predation risk assessment and take necessary actions to avoid the potential hazard. Such predation risk avoidance strategies employed by the prey are usually based on the detection of predator body odor and have been well documented across the animal kingdom. Progeny of phytophagous insects undergo a metamorphic journey involving the phases egg, larva, pupa, and adult. Consequently, an innate instinct in the gravid females to pass on the gene pool forms the basis for choosing an ideal oviposition site with minimal predation risk. Thus, effective prioritization of their egg-laying sites includes availability of food and enemy-free space to improve their offspring’s survival prospects.

Tephritid fruit flies cause huge loss to fruit and vegetable crops around the world. The oriental fruit fly, *Bactrocera dorsalis* (Hendel), is a major pest of fruit crops in South-East Asia with the notorious reputation of being a high-risk quarantine pest across the globe. While the oviposition behavior and host plant interactions for tephritids have been widely researched, their interactions with predators (=vertical interactions), remain largely unexplored. Moreover, information on the tephritid’s anti-predatory strategies that help them escape predation is also limited.

Among several predators like spiders, rove beetles, wasps, birds, and small mammals, ants are listed as the major threat not only to fruit fly pupae in the soil but also to gravid female flies that frequent oviposition sites. Studies indicate that fruit flies can detect ant body odors and assess the predatory threat while laying their eggs. A study performed by Van Mele showed that the fruit flies, *Ceratitis cosyra* (Walker) and *Bactrocera invadens* (Drew, Tsurata & White) [= *Bactrocera dorsalis*] avoid landing on ant-exposed mango and prefer not to oviposit on them. These authors provided evidence on the ability of the mentioned fruit flies to differentiate fruits from ant colonized and ant-free trees. Additionally, the fruit flies spend less
time on ant colonized trees suggesting that female fruit flies can detect pheromone cues from weaver ants, *Oecophylla longinoda* (Latreille), and the intensity of these pheromone cues significantly alters their oviposition behavior\(^{20}\). Fruits run over by weaver ants are less likely to be selected by gravid fruit flies as oviposition sites. Thus, we exploited the predator-prey interaction between the weaver ant *Oecophylla smaragdina* (Fab.) and *B. dorsalis* to identify chemical cues associated with *O. smaragdina* headspace volatiles, which gravid female *B. dorsalis* uses to assess predation risk during oviposition.

Materials and Methods

Insects

Insect rearing Guava fruits infested by *B. dorsalis* were collected from the ICAR-Indian Institute of Horticultural Research (IIHR), Bangalore experimental field and placed on sterile dry sand to aid pupal development. The collected pupae were transferred to netted cages of dimensions 30×30×30 cm for adult emergence. Newly emerged adults were fed a diet of yeast extract, sugar and honey solution. Mature gravid females (>15 days old) were used for all bioassays and starved for 2h before conducting the experiments. Weaver ants (n = ~400) were collected in a sterile polyethylene bag (ca. 30 × 15 cm) from the IIHR mango fields and transferred to a 1L Shott Duran (Borosil) bottle. Fruit fly and ant colonies were maintained in the laboratory at 27±1°C, 75±2% RH and 14L:10D h photoperiod.

Weaver ant body volatile collection

A customized air entrainment system was used to collect weaver ant body volatiles (OBV) as per the procedure described previously Kamala Jayanthi\(^{21}\) with minor modifications. All glassware was washed with liquid soap, rinsed in distilled water followed by acetone, and baked in an oven at 200°C for 2 h before use. The Porapak Q tubes (50mg, 60/80 mesh; Supelco, Sigma
Aldrich, India; length = 5cm. I.D = 5 mm) were washed with redistilled diethyl ether (Merck 99.7%) and heated at 120°C for 2 h under a stream of nitrogen gas (99.999 % pure) to remove contaminants before activation. Weaver ants were used for volatile collection. Air, purified by passage through an activated charcoal filter, was pumped into the vessel through the inlet port (500 mL/min). Volatiles were collected on Porapak Q in a glass tube inserted into the collection ports on the top of the bottle. Further, pumps drew air (400 mL/min) through these tubes. Air flow rates were controlled so that more purified air was pumped in than was drawn out, ensuring that unfiltered air was not drawn into the bottle from outside. All connections were made with PTFE tubing fitted with brass ferrules and fittings (Swagelok, India) and sealed with PTFE tape. The headspace volatiles collected for 24 h and eluted with 750 μl of redistilled diethyl ether served as OBV for all bioassays. Collected samples were stored in glass vials in a freezer (−20 °C) until use.

Chemicals, test samples, and blends

Authentic chemical standards, γ-Octalactone (≤ 97 % pure), n-undecane (≥ 99 % pure), n-dodecane (≥ 99 % pure), n-tridecane (≥ 99 % pure) were procured from Sigma Aldrich, USA. Headspace volatiles of weaver ant from Porapak extracts (10µl) were directly used as test samples after elution. The individual authentic standards of EAD active compounds (10 µl of 100 ng/µL) and the synthetic blend of n-undecane and n-tridecane in concentrations matching the natural OBV sample (529.0 ng/µL + 93.0 ng/µL) were prepared with diethyl ether (99.7 % pure, Merck).

Oviposition bioassays

Three series of oviposition bioassays were carried out with weaver ant headspace volatiles, EAD active compounds and synthetic blend to study their oviposition deterrence to female B. dorsalis.
Weaver ant body volatiles

Agarose 1% (SeaKem LE Agarose, Lonza) was prepared in distilled water and poured into plates (Petriplates, 90×14 mm Tarsons) to be used for assays (n = 10). The plate was smeared with γ-Octalactone (10 µl of 980 μg/μL) and allowed to dry for a few minutes. A perpendicular line was drawn to divide the plate into two halves. One half was smeared with OBV test sample (10 µl) while the other half was left as is, which served as a positive control. An untreated agarose plate served as a negative control. The plates were placed in a cage (30×30×30 cm) containing 100 pairs of *B. dorsalis* and the insects were allowed to oviposit. The egg count was recorded after 24h.

EAD active compounds

Two types of assays were carried out to identify the relative oviposition deterrence of weaver ant EAD active compounds (*n*-undecane, *n*-dodecane and *n*-tridecane) individually and in various combinations. For these assays, 1.0% agarose plates were prepared as explained earlier and γ-Octalactone (10µl) was smeared uniformly all over the plate. The plate was divided into four quadrants, of which one quadrant served as the positive control (GO). In the first assay, the remaining three quadrants were smeared with *n*-undecane, *n*-dodecane and *n*-tridecane (n = 15) (10 µl of 100ng/μL) individually. In the second assay, the three quadrants were smeared with a mix of *n*-undecane and *n*-tridecane; *n*-tridecane and *n*- dodecane; and *n*-undecane and *n*-dodecane in 1:1 ratio (10 µl of 100ng/μL) (n = 5) respectively. The insects were allowed to oviposit as described earlier and the egg count was recorded after 24 h. Dose-response assays of *B. dorsalis* with authentic EAD active compounds (*n*-undecane and *n*-tridecane) at concentrations ranging from 10^{-1} to 10^{-8} (1000 to 20ng/μL) were carried out on 1.0% agarose oviposition assay plates. γ-Octalactone served as the positive control (n = 6) here. The insects were allowed to oviposit and the egg count was recorded after 24 h.
Two types of oviposition assays were carried out to study the oviposition deterrent activity of OBV sample and the two-component synthetic blend (SB) prepared with the EAD active compounds (n-undecane and n-tridecane in natural concentration as observed in OBV sample (529.0 ng/μL + 93.0 ng/μL). In the first type, agarose (1.0%) plates were prepared as mentioned earlier. The plate was divided into two halves, one half was smeared with OBV (10 μl), and the other half was smeared with SB (10 μl). The insects were allowed to oviposit as described earlier (n = 10) and the egg count was recorded after 24 h. In the second type, mature female *B. dorsalis* (n = 50) maintained in a square cage (dimensions: 30×30×30 cm²) were exposed to ripe bananas (cv. Yelakki) (n = 6) smeared with either 100 μl of OBV sample or the SB. The bananas were collected 24 hours after exposure, placed in plastic containers and observed for the number of pupae formed.

Olfactometer bioassay for *B. dorsalis*

A Perspex four-arm olfactometer (60 mm diameter) was assembled as described previously Pettersson\(^\text{22}\) to study the behavioral effect of OBV on adult female *B. dorsalis*. The bioassays and consecutive analyses were carried out as described previously Kamala Jayanthi\(^\text{21,23}\). Three types of bioassays were performed; in type 1, behavioral response of gravid female *B. dorsalis* to the OBV was recorded in four-arm olfactometer. In this assay 10 μl of the test sample was directly pipetted onto filter paper and the solvent was allowed to evaporate before placing into the treatment arm. Filter paper strips with solvent (10 μL of diethyl ether) served as controls in the remaining three arms. The type 2 bioassay recorded the response of gravid female *B. dorsalis* to synthetic EAD active compounds (n-undecane, n-dodecane and n-tridecane) (10 μL of 100ng/μL) individually and type 3 was a choice test between the OBV and synthetic blend (SB) of EAD active compounds (in natural concentration as observed in the OBV sample). In this setup, out of four arms, two served as treatment arms (OBV & SB, 10 μL) and two served as control arms (10 μL, 10 μL of diethyl ether).
solvent blank). Ten (n = 10) replicates were carried out and the observations were recorded as the amount of time spent by the gravid female in each arm (in all bioassays) and the number of entries made by the female (only in the second bioassay) using Olfa software (F. Nazzi, Udine, Italy). The apparatus was rotated 90° every 2 min to eliminate any directional bias in the bioassay cage.

Coupled Gas Chromatography-Electroantennography Detection studies (GC-EAD)

EAD recordings from gravid female, *B. dorsalis* (n = 6) were performed as described previously by Kamala Jayanthi. The carefully excised insect head was positioned on a reference electrode (Ag-AgCl glass made) filled with saline solution and the tips of both the antennae were placed on the recording electrode. A customized software package (Syntech, Germany) was used to analyze the signal passing through a high impedance amplifier. For coupled GC-EAG analysis, effluent from the GC column was split into two parts in 1:1 ratio and each part were simultaneously directed to the antennal preparation and the GC detector as described previously.

The OBV sample (2 μl) was analyzed on an Agilent 7890B GC equipped with an ionizing flame detector (FID) and an Agilent J&W HP-5 (5%-phenyl)-methylpolysiloxane non-polar fused silica capillary tubing column of 30 m length, 0.25 mm diameter, and 0.25 μm film thickness. The thermal program was initially set at 60 °C for 1 min, and later ramped up at 15 °C/min up to 240 °C and held for 2 min in splitless mode (40mL/min ratio) with Nitrogen as the carrier gas. Data were analyzed using Chemstation software (Agilent ChemStation). Quantification of volatiles (*n*-undecane & *n*-tridecane) was done using a single point external standard method with authentic samples of standards as described previously by Skelton.
Gas Chromatography-Mass Spectrometry

The OBV sample collected in solvent (DEE, Diethyl ether, Merck, 99.97%) was analyzed using GC-MS, Agilent 7890B GC system equipped with Mass spectrophotometry, MS (Agilent 5977 MSD). An Agilent J&W HP-5ms Ultra Inert (5%-phenyl)-methylpolysiloxane non-polar fused silica capillary tubing column of 30 m length, 0.25 mm Diameter, and 0.25 µm film thickness was used to evaluate the samples. The oven temperature was set as mentioned previously, for the GC-EAD. MS was set to full scan mode (70 eV) with AMU range of 40 to 450. 2 µl of the sample was injected in splitless mode (40mL/min ratio) with the injection temperature at 270ºC. Individual volatile compounds were identified by comparing the GC retention time, mass spectrum and comparing the MS spectra with the spectral library, NIST 14. The identified compounds (n-undecane, n-dodecane & n-tridecane) were authenticated by co-injecting standard synthetic compounds along with OBV sample.

Electrophysiology studies (EAG)

EAG studies for OBV sample, synthetic blends and individual EAD active compounds (at different log concentrations, log 10^{-1} to 10^{8}) were carried out as described previously Damodaram26 and the normalization was done based on the standards as described previously27. For normalization, the antenna was exposed to positive (10% honey) as well as negative controls (empty air), before and after each test stimulation. The responses (mV) were averaged and the difference between this value and the corrected EAG response to the test stimuli was calculated. The antennal response to the test samples were further normalized to the solvent. Results obtained for EAG studies were represented as a heat map constructed using GraphPad prism software ($n = 6$ per treatment).
Statistical analyses

Paired t-test was applied to the single-choice olfactometer/oviposition bioassay data, while ANOVA with Tukey post-test was applied to compare means for all other olfactometer/oviposition bioassays with multiple choices. All analyses were carried out using GraphPad Prism software (Ver. 7) for Windows 10.

Results

Weaver ant headspace volatiles deter fruit flies

Considering the possibility of a change in oviposition preference of *B. dorsalis* in the presence of weaver ant headspace volatiles, a dual-choice bioassay was performed using γ-Octalactone as described previously by Kamala Jayanthi$^{21, 23}$, a known oviposition stimulant as a positive control. When presented with a second choice, the number of eggs laid by gravid *B. dorsalis* in the zone smeared only with γ-Octalactone (GO) was significantly (mean \pm s.e.m; 117.8 \pm 19.14) more than in the test zone that contained *O. smaragdina* headspace volatiles (OBV) along with GO, (OBV+GO) (One-way ANOVA, Tukey’s multiple comparison test - mean \pm s.e.m; OBV + GO = 30.5 \pm 6.70, $P < 0.0001$, $F_{2,27} = 27.03$). No difference was observed between untreated control and OBV+GO treatment (Fig. 1a). When given a choice in a four-arm olfactometer assay, where, one arm had the test sample (OBV) while the other three had solvent as control (diethyl ether), the flies spent significantly less time (Paired t-test, mean \pm s.e.m; OBV = 1.07 \pm 0.37; Control = 2.72 \pm 0.19, $P = 0.006$, $t = 3.52$, $df = 9$) in the treatment arm containing OBV compared to the control (Fig. 1b). These results indicate that female fruit flies not only avoided ovipositing but also spent less time in the OBV treated areas.
Specific cues from weaver ant headspace volatiles deter fruit flies

Ants are known to leave odor trails as they move out of their nests while foraging to find their way back, track food sources and provide a trail to conspecifics28. We sought to determine the specific body odor cues in weaver ants that allow fruit flies assess the predation risk. Electroantennogram (EAG) tests carried out on female fruit fly antennae to address this question detected three electrophysiologically active compounds of the higher alkane groups namely, \textit{n}-undecane, \textit{n}-dodecane and \textit{n}-tridecane (Fig. 2). To test if the oviposition deterrent activity was mediated by electrophysiologically active compounds, synthetically derived versions (≥ 99% pure) of \textit{n}-undecane, \textit{n}-dodecane and \textit{n}-tridecane (10µl of100 ng/µL) were evaluated against fruit flies in olfactometer assays. Surprisingly, two of the mentioned synthetics \textit{n}-undecane and \textit{n}-dodecane failed to elicit a significant response for the time spent \cite[Paired \textit{t}-test, mean ± s.e.m; \textit{n}-undecane = 1.46 ± 0.90, control (diethyl ether) = 1.74 ± 0.36, \textit{P} = 0.81, \textit{t} = 0.24, \textit{df} = 9; \textit{n}-dodecane = 2.97 ± 0.57, control (diethyl ether) = 1.80 ± 0.28, \textit{P} = 0.15, \textit{t} = 1.56, \textit{df} = 9]{t} and the number of entries made \cite[\textit{n}-undecane = 2.50 ± 1.10, control (diethyl ether) = 2.03 ± 0.44, \textit{P} = 0.71, \textit{t} = 0.38, \textit{df} = 9, \textit{n}-dodecane; 2.60 ± 0.80, control (diethyl ether); 3.36 ± 0.73, \textit{P} = 0.12, \textit{t} = 1.70, \textit{df} = 9] by gravid \textit{B. dorsalis} flies, when tested individually compared to the control (diethyl ether). However, the time spent and the number of entries made by the fruit fly in the \textit{n}-tridecane treated arm were significantly reduced compared to the control arm \cite[Paired \textit{t}-test, mean ± s.e.m; Time spent: \textit{n}-tridecane = 1.96 ± 0.18, control (diethyl ether) = 3.89 ± 0.13, \textit{P} < 0.0001, \textit{t} = 8.71, \textit{df} = 9 and Entries: \textit{n}-tridecane = 3.80 ± 1.35, control (diethyl ether) = 5.80 ± 1.49, \textit{P} = 0.02, \textit{t} = 2.75, \textit{df} = 9]{t} confirming its deterrent activity against \textit{B. dorsalis} (Fig. 3).

A significant reduction \cite[One-way ANOVA, \textit{F}_{3,56} = 5.71; \textit{P} = 0.001]{anova} in the number of eggs laid was observed for the treatments, \textit{n}-undecane (mean ± s.e.m; 7.86 ± 1.83) and \textit{n}-tridecane (15.60 ± 1.88) compared to the positive control (GO smeared zone) (145.1 ± 40.3) whereas the egg count for \textit{n}-dodecane (mean ± s.e.m; 71.33 ± 34.38, \textit{P} =0.21) was not significantly different from the control (Fig. 4a). This experiment demonstrated that the higher alkanes \textit{n}-undecane and
n-tridecane in weaver ant headspace volatiles probably elicit an oviposition deterrent behavior in fruit flies.

Despite being identified previously by Attygalle29, specific studies showing the relative ability of the three compounds [n-undecane (U), n-tridecane (T), n-dodecane (D)] in deterring the fruit flies from ovipositing have not been reported. We further investigated whether there is a synergistic effect of these three alkanes on limiting the oviposition in fruit flies. The three compounds mixed in various combinations (n-undecane and n-tridecane; n-tridecane and n-dodecane; n-dodecane and n-undecane) were tested in oviposition assays. All dual combinations of synthetic compounds resulted in significantly reduced oviposition numbers compared to the positive control [One-way ANOVA, mean ± s.e.m; U+T = 0.00 ± 0.00; T+D = 3.60 ± 2.54; D+U = 3.00 ± 2.00, control (GO smeared zone) = 23.40 ± 6.82, $P = 0.001$, $F_{3,16} = 8.05$, $n = 5$] (Figure 4b) but were not significantly different from each other. The two electrophysiologically active compounds tested, n-undecane and n-tridecane (individually & in combinations) when presented to gravid female \textit{B. dorsalis}, consistently deterred the fruit flies from ovipositing and resulted in fewer eggs. Therefore, a dose-response (10^{-1} to 10^{-8}) study was carried out to identify the minimum dose at which these synthetic cues could deter gravid \textit{B. dorsalis} from ovipositing. With an increase in the dose of synthetic cues the number of eggs laid by \textit{B. dorsalis} decreased (One-way ANOVA, $P < 0.0001$, $F_{9,50} = 11.9$) (Fig. 5).

Comparison of synthetically reconstituted ant headspace volatiles to natural ant headspace volatiles

Natural weaver ant headspace volatiles (OBV) were reconstituted using synthetic forms of the electrophysiologically active chemical cues n-undecane (529 µg/µL) and n-tridecane (93 ng/µL) (SB). The synthetic blend was then tested for its ability to deter the gravid female fruit flies in four-arm olfactometer assays and dual-choice oviposition bioassays. The gravid female flies avoided entering the arms treated with the natural weaver ant headspace volatiles (OBV) and the
synthetic blend of weaver ant headspace volatiles (SB) (One-way ANOVA, mean ± s.e.m, OBV = 1.55 ± 0.33, SB = 1.97 ± 0.47, Control = 3.46 ± 0.60, P = 0.02, $F_{2,27} = 4.28$) in the four-arm olfactometer bioassay (Fig. 6a). The antennal response of B. dorsalis against OBV, SB and individual electrophysiologically active compounds, n-undecane, and n-tridecane (at different log concentrations, 10^{-1} to 10^{-8}) was quantified using EAG studies and the maximum antennal response (0.08 mV) of fruit flies was recorded against the concentrations 10^{-1} & 10^{-2} (Fig. 6b). The number of eggs laid by gravid B. dorsalis in multiple choice assays between OBV (mean ± s.e.m; 0.00 ± 0.00, SB; 2.30 ± 1.31), was significantly different [One-way ANOVA, $F_{(2,27)} = 19.91, P < 0.0001$] from the control (mean ± s.e.m; 52.75 ± 11.50). However, the gravid fruit flies did not differentiate between the natural OBV and SB ($P > 0.999$) (Fig. 7a). The above four-arm olfactometer and oviposition assay results together suggest that the synthetically reconstituted blend could successfully mimic the weaver ant headspace volatiles in deterring fruit flies and also in preventing them from ovipositing.

Fruit flies did not prefer fruits smeared with OBV and SB for egg-laying

Of several predation risks, ants pose the most likely threat fruit flies encounter in an orchard eco-system while foraging for oviposition sites, mates and food. Previous studies have indicated that fruit flies can differentiate the fruits run-over by weaver ants and readily avoid such fruits as oviposition sites. To investigate whether fruit flies can differentiate fruits smeared with natural OBV from those smeared with synthetically reconstituted ant odor (SB), we examined their oviposition behavior using ripe banana fruits in a cage assay. The fruits smeared with OBV and SB yielded significantly fewer pupae (mean ± s.e.m; OBV = 5.33 ± 2.47, SB = 2.17 ± 1.64) compared to the untreated control (32.67±10.94; One-way ANOVA, $F_{(2,15)} = 6.57, P = 0.008$). However, no significant difference in the number of pupae was observed between OBV and SB ($P > 0.999$) treated bananas indicating the inability of fruit flies to differentiate natural weaver ant headspace volatiles from the synthetic odor (Fig. 7b).
Discussion

Here we demonstrate for the first time that gravid female fruit flies, *B. dorsalis*, avoid laying eggs in or even visiting areas that smell of weaver ant body odors. This strongly suggests that female *B. dorsalis* can potentially gauge the immediate predation risk to themselves and their progeny by detecting ant body odors associated with the presence of *O. smaragdina*.

Weaver ant, (*O. smaragdina*), nests are common in mango orchards, with guard and worker ants actively foraging across the branches within the tree and between neighboring trees. The oriental fruit fly, *B. dorsalis*, being a common frugivorous pest of several perennial tree crops, often has close encounters with these predatory ants in the orchard ecosystem. The oviposition decision making by female fruit flies is a dynamic process that balances several factors involving survival and progeny fitness apart from predation risk to the gravid female.

During their predator encounters in an orchard ecosystem, fruit flies might have learned to assess the predation risk associated with weaver ants’ body odors. While earlier studies have indicated the preferential avoidance of fruits from weaver ant colonized trees by fruit flies, the present study shows that the three aliphatic hydrocarbon components of the ants’ headspace volatiles, *n*-undecane, *n*-tridecane and *n*-dodecane identified under laboratory conditions govern the assessment of predation risk by the female fruit fly. Earlier studies have extensively reported the presence of these compounds in cuticular body extracts of several ant species either as the component of DuFour/poison glands and/or alarm pheromones. The DuFour/poison glands, commonly associated with social and solitary hymenopterans, play an important role in defense and communication processes.

In ants, the DuFour gland is an exocrine gland that secretes chemicals into the surroundings that have a communicative function with conspecifics. Therefore, it might have a potential role in coordinating nest building and oviposition. These glands help produce trail pheromones/territory marking pheromones, and play an important role in communicating with fellow worker ants while...
foraging for food28. To release these pheromones, ants usually drag their abdominal sting on the substrate as they move, thereby providing a directional signal to their fellow worker ants to track the footprints of preceding foragers28. Not surprisingly, along with fellow ants, fruit flies might have also acquired the ability to associate these odors with the presence of ants and consequently avoid such places while foraging and ovipositing.

The female insect has to quickly assess the surrounding during oviposition considering all possible factors that maximize the survival chance of its progeny as well as itself. Therefore, such a decision might depend on certain innate recognition cues critical to assess important criteria like the quality of host-plant, predation risk, and competition23. In the present study, we identified and established that specific chemical components of the weaver ants’ headspace volatiles, namely \textit{n}-undecane and \textit{n}-tridecane, can suffice to deter female fruit flies from ovipositing. Behavioral analyses revealed that the EAG active compounds \textit{n}-undecane and \textit{n}-dodecane could not independently deter the gravid females (Fig. 3). However, \textit{n}-undecane, a liquid alkane hydrocarbon, could significantly reduce the number of eggs laid by gravid females compared to \textit{n}-dodecane (Fig. 4). Further, \textit{n}-tridecane could repel the gravid females and serve as an effective oviposition deterrent for female \textit{B. dorsalis} (Fig. 3&4). This is the first study that identifies and characterizes the predatory ant headspace volatile cues that induce behavioral changes in the fruit pest, \textit{B. dorsalis}.

Under laboratory conditions, a standardized recipe of synthetic weaver ant headspace volatiles comprising \textit{n}-undecane and \textit{n}-tridecane when smeared on test fruits performed similarly to natural body volatiles of weaver ants and significantly reduced the number of eggs laid by \textit{B. dorsalis}. These results provide a basis for developing a synthetic blend of weaver ant body cues that can effectively be used to prevent fruit fly oviposition during fruit harvest when applying synthetic chemical insecticides is forbidden given the pesticide residue issues. Our study also highlights the potential scope of using a blend with \textit{n}-undecane and \textit{n}-tridecane as components for
a ‘behavior modifying approach’ that effectively discourages *B. dorsalis* egg-laying in ready to harvest fruits. Hence, these chemical compounds could potentially prevent post-harvest losses in mango and can be an important component to upgrade the current fruit fly IPM strategy.

Acknowledgements

The authors thank the Director, IIHR for providing research facilities. The financial support from the Indian Council of Agricultural Research through National Fellow Project is highly acknowledged. We thank J Sagar for his technical support with the handling of insects. Senior author extends her sincere thanks to Dr Toby J A Bruce for his valuable suggestions and encouragement. We immensely thank and appreciate Dr Irmgard Seidl-Adams, Division of Entomology, and Pennsylvania State University, the USA, for her critical editing, valuable comments and suggestions, which helped us improve the overall quality of the manuscript.

Conflict of Interest

The authors declare that there is no conflict of interests.

Author Contributions

Conceptualized and designed the experiments: KJPD SKP. Performed the experiments: SKP. Analysed the data: KJPD SKP MV. Drafted Manuscript: KJPD SKP MV.

Funding

Funding Award no. 27(3)/2010-HRD; award title: National Fellow Project - Studies on Phyto-Semiochemicals involved in insect-plant interactions of major horticulture pests: Deciphering the chemical cues.
Supporting Information

Table S1: List of the chemical compounds identified from the *Oecophylla smaragdina* Headspace volatiles.

References

6. Lopez-Ortega, M., & Williams, T., Natural enemy defense, provisioning and oviposition site selection as maternal strategies to enhance offspring survival in a sub-social bug. *PloS one.*, 2018, **13**.

Figures

Fig. 1. Bioassays for *B. dorsalis* to test oviposition deterrent effect of OBV. (a) The number of eggs laid (Y-axis) was plotted for γ-Octalactone + weaver ant body volatiles (OBV+GO) treated region (blue bar) and the γ-Octalactone alone (GO) (Black bar) and the control (grey bar). Female flies laid significantly a smaller number of eggs (One-way ANOVA, $P<0.0001$, $n=10$) on OBV+GO treated region (mean ± s.e.m; 117.80 ± 19.14) compared to the positive control, GO (mean ± s.e.m; 30.50 ± 6.71) and control (mean ± s.e.m; 0.60 ± 0.50). (b) The time spent (min) was plotted against the weaver ant body volatile (OBV) (blue bar) and the control samples (grey bar).
in a four-arm olfactometer assay showing the deterrence to gravid females. The flies spent significantly less time (Paired t test, $P=0.006$, $n=10$) in the treatment arm containing OBV (mean ± s.e.m; $1.08±0.38$ min) compared to the control arm (mean ± s.e.m; $2.72±0.20$).

Figure 2.

Figure 2. GC EAD response: Gas Chromatography- Electroantennodetection (GC-EAD) showing the female *B. dorsalis* antennal response to Porapak eluted weaver ant headspace volatile.
Figure 3. Olfactometer Bioassays for *B. dorsalis* to synthetic EAD active compounds (a) The time spent (min) (Y-axis) by *B. dorsalis* gravid females in four-arm olfactometer assays was plotted for electrophysiological (EAD) active synthetic compounds *n*-undecane (Paired *t* test, Time spent, mean ± s.e.m, 1.47±0.90; control: 1.74±0.37, *P* = 0.71) (orange bar), (b) *n*-dodecane (Time spent, mean ± s.e.m, 2.97±0.57; control: 1.81±0.89, *P* = 0.15) (blue bar), (c) *n*-tridecane (Paired *t* test, Time spent, mean ± s.e.m, 1.96±0.18; control: 3.90±0.14, *P* = 0.71) (Dark red bar) along with
the diethyl ether control) (grey bar). (d) The number of entries made (number, mean ± s.e.m) (y-axis) was plotted for synthetic compounds that elicited EAD response, n-undecane (Paired t test, Entries, mean ± s.e.m; 2.5±1.11; control: 2.03±0.45, P =0.71, n = 10), (e) n-dodecane (Paired t test, Entries, mean ± s.e.m; 2.60±0.81; control: 3.37±0.73, P =0.12, n = 10) and (f) n-tridecane (Paired t test, Entries, mean ± s.e.m; 3.80±1.36; control: 5.8±1.49, P<0.0001, n = 10) along with diethyl ether control (grey bar). The time spent and the entries made were found to be non-significant for n-undecane and n-dodecane while n-tridecane showed significant results for both, the time spent and the entries made.

Figure 4.

Oviposition agarose plate assay: Histogram representation of the number of eggs laid (Y-axis) by gravid female *B. dorsalis* in an agarose plate assays with (a) individually the three electrophysiologically active components identified, n-undecane (mean ± s.e.m, 7.87±1.84) (orange bar), n-dodecane (mean ± s.e.m, 71.33±34.38) (blue bar), and n-tridecane (dark red bar) (mean ± s.e.m, 15.60±1.88) compared to γ-Octalactone (GO) (black bar) (mean ±
s.e.m,145.10±40.30) (One way ANOVA, $P = 0.002$, $n = 15$). The results were significant for all the three compounds when tested individually. (b) Oviposition deterrence of synthetic compounds in dual combinations [n-tridecane + n-dodecane, T+D: number, mean ± s.e.m, 3.60±2.54 (dark red bar)]; [n-dodecane + n-undecane, D+U, mean ± s.e.m, 3.00±2.00 (orange bar)]; [n-undecane + n-tridecane, U+T, mean ± s.e.m, 0.00±0.00]; [γ-Octalactone, GO, mean ± s.e.m, 23.40±6.82] (black bar) revealed significant difference in the number of eggs laid by $B. dorsalis$ (One-way ANOVA, $P = 0.002$, $n = 5$).

Figure 5. Oviposition plate assays showing the dose-dependent oviposition response of female $B. dorsalis$ to n-undecane and n-tridecane. The number of eggs laid (Y-axis) for each of the log doses (10^{-1} to 10^{-8}) tested (X-axis) was represented as a bar graph for n-undecane (orange bars) and n-tridecane (dark red bars). Significant difference (One-way ANOVA, $P<0.0001$, $n = 6$) was observed in the number of eggs laid by $B. dorsalis$ across the log doses tested 10^{-1} to 10^{-8} (n-
Figure 6. Four-arm olfactometer assays (a) Results for the four-arm olfactometer assay in the form of time spent (Y-axis) by the gravid female in each of the treatment arms, weaver ant body volatiles (OBV), Synthetic blend of the EAD active components in natural concentration (SB) and diethyl ether (Control) is represented as a histogram here in blue, faded blue and grey bars. Significant difference was observed (One-way ANOVA, $P = 0.02, F_{2,27} = 4.28$) in the time spent (min, mean ± s.e.m) by gravid female *B. dorsalis* in the treated and control regions for OBV (Time: $1.55 ± 0.34$), SB (Time: $1.97 ± 0.47$) and control (Time: $3.46 ± 0.61$ min). (b) The EAG response were recorded and depicted as heat map based on dose-response profile of gravid female *B. dorsalis* antennae towards OBV, SB and EAD active compounds (n =6). The female fly exhibited best
response for OBV, SB, n-undecane and n-tridecane at 10^1 and 10^2 log concentrations and moderate response for n-dodecane.

Figure 7.

(a) **Oviposition assay showing the egg-laying response of female** *B. dorsalis*. The number of eggs laid (Y-axis) by gravid female *B. dorsalis* in agarose plates with γ-Octalactone + weaver ant body volatiles (OBV), γ-Octalactone + Synthetic blend (SB) of the EAD active components in natural concentration and just γ-Octalactone (control, GO) was represented as a bar graph. Female flies laid significantly more eggs (One-way ANOVA, $F_{(2,27)} = 19.91; P<0.0001$) in control, GO smeared zone (mean ± s.e.m; 52.75±11.50) compared to OBV (mean ± s.e.m, 0.00 ± 0.00) and SB (mean ± s.e.m, 2.30±1.32). (b) **Cage assays with treated fruits**: Banana fruits smeared with weaver ant body volatiles (OBV), Synthetic blend (SB) of the EAD active components in natural concentration and untreated (control) were observed and number of pupae (Y-axis) was plotted as a histogram against the treatments (X-axis). Significant difference was observed (One-way ANOVA, $F_{(2,15)} = 6.57; P =0.008$) in the number of pupae recovered from fruits in different treatments OBV (mean ± s.e.m, 5.33±2.47) and SB (mean ± s.e.m, 2.17±1.64) and control (mean ± s.e.m, 32.67±10.94).