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Abstract 8 

Climate change has been influencing bird species in different ways. Some documented 9 

changes include reduction in geographic range, declines in abundance and changes in the 10 

seasonality of migratory bird species in spring after overwintering in the tropics. We 11 

undertook a study on the two species of high-elevation dependant, restricted-range 12 

flycatchers: Black-and-orange Flycatcher (BOF) Ficedula nigrorufa (Jerdon, 1839) and Nilgiri 13 

Flycatcher (NIF) Eumyias albicaudatus (Jerdon, 1840), to find out how they respond to the 14 

predicted climate change scenarios. We used 194 and 300 independent occurrence points for 15 

BOF and NIF to develop climate models and understand the species responses to climate 16 

change scenarios using maxent algorithm. We used isothermality, mean temperature of 17 

coldest quarter and slope for developing the BOF model. For the NIF, we used isothermality, 18 

mean temperature of coldest quarter, precipitation of driest month, precipitation of warmest 19 

quarter, slope and enhanced vegetation index. The mean temperature of coldest quarter (BIO 20 

11) was the most crucial variable influencing climate suitability for both the species. The 21 

model predicted the current extent of occurrence of 6,532 km2 as suitable for BOF and 12,707 22 
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km2 for NIF, within their ranges. However, only 27% and 24% of the existing suitable area of 23 

BOF and NIF, respectively falls within the protected area network in the Western Ghats. 24 

Future predictions suggest suitable area loss to the tune of 20% to 31% for BOF and 36% to 25 

46% for NIF by 2050.  26 

Keywords: biodiversity hotspots; Black-and-orange Flycatcher; grassland-shola; habitat loss; 27 

montane habitat; Nilgiri Flycatcher; restricted range; Species Distribution Modelling (SDM)  28 

 29 

1. Introduction  30 

Anthropogenic climate change and increased environmental degradation has put millions of 31 

species at risk of extinction1. As per the recent report of the Intergovernmental Panel for 32 

Climate Change's (IPCC), anthropogenic activities will cause global temperature to rise by 33 

1.2°C between 2030 and 2052 compared to pre-industrial levels2. Erratic environmental 34 

conditions, declines in species abundances and widespread extinctions are some of the 35 

significant predicted effects of climate change3,4. An estimated 4% to 8% of the vertebrate 36 

species from across the world would lose half of their current suitable habitat if global 37 

temperature increases by 1.5°C to 2°C2. Therefore, climate change threatens the global 38 

biodiversity and ultimately the structure and ecosystem functioning 3,5,6.  39 

Mountain ecosystems, in particular, are more sensitive to climate change and are expected 40 

to experience unprecedented rates of warming during the 21st century7. The climate on the 41 

mountains rapidly changes with an elevation over a relatively short vertical distance, a feature 42 

unique to these ecosystems8. Hence, these ecosystems are valuable indicators of climate 43 

change9. The oscillating climate and unique floral structure in the montane ecosystems 44 
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provide special microclimatic conditions and habitat for the species, and such montane 45 

ecosystems are known as 'sky islands'10,11. The Western Ghats (WG),  the region considered 46 

one of the 36 biodiversity hotspots in the world12, situated in southwest India and consists of 47 

such sky islands. Palakkad Gap is the major discontinuity in the entire stretch of the 1600km 48 

long WG. The WG is also a  World Heritage Site since 201213, and two hill ranges in the 49 

Western Ghats (Nilgiri Hills and Agasthyamalai Hills) have been recognised as Biosphere 50 

Reserves by the United Nations Educational, Scientific and Cultural 51 

Organization (UNESCO)14,15. The WG mountain range exhibits high endemism with several 52 

species restricted to a narrow elevational range16. This specialised habitat is now getting 53 

deteriorated due to changing climatic conditions and anthropogenic activities17ς19. Under the 54 

looming threat of global warming and climate change driven habitat loss, it is vital to assess 55 

the fate of habitat specialists of the WG, so that remedial conservation strategies can be 56 

planned.  57 

Black-and-orange Flycatcher (BOF) (Ficedula nigrorufa) and Nilgiri Flycatcher (NIF) (Eumyias 58 

albicaudatus) are monotypic species endemic to the southern WG and confined to the higher 59 

elevations. The BOF prefers the understorey of shola forests, especially Strobilanthes and 60 

bamboo thickets, among the stunted evergreen forest patches in the sky islands of the WG 61 

and distributed above ~700m altitude but more common around 1500m and above20,21. The 62 

NIF is also found above ~600m elevation but more frequently above 1200m22. Degraded 63 

forests and plantations of timber, tea, coffee and cardamom adjacent to the forest areas are 64 

also considered suitable habitats. They mainly feed on invertebrates, however, the NIF also 65 

consumes fruits and berries of Vaccinium spp., Syzygium spp., Cestrum spp. etc21. Both these 66 

flycatchers are categorised as Least Concern (LC) according to the IUCN Redlist23,24 and fall 67 

under Moderate conservation concern as per the current State of India's Birds report25.  68 
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It is essential to know the effect of climate change on endemic species because of their 69 

restricted distribution and specific habitat requirements26. Species distribution models 70 

(SDMs) are practical tools to understand the relationship between species occurrence and 71 

environmental factors27,28. SDMs also help determine the previously unknown areas of a 72 

species from the known species occurrence points and the predictor variables29ς31. 73 

Understanding the spatial distribution and future changes in the distribution of a species 74 

would be helpful for long-term conservation, and the SDM is a valuable tool for that32.  75 

The main objectives of this study are, (a) To determine the environmental variables that 76 

influence the distribution pattern of BOF and NIF (b) To determine the extent of suitable areas 77 

of BOF and NIF in the WG and (c) To predict the future changes in the climatic suitability of 78 

the habitat of BOF and NIF across the WG under different climate change scenarios for the 79 

2050s by using species distribution modelling.  80 

2. Materials and methods  81 

2.1. Background 82 

The selection of background area is critical in SDM studies for better predictive power and 83 

model performance. The background area should contain suitable habitats for the taxa in 84 

question and consider the species' ability to dispersal. In this study, we selected the southern 85 

Western Ghats (SWG) (8° to 13.5°N and 75° to 77.5°E) as background in which the entire 86 

distribution of both species is included (Figure 1). The Brahmagiri Hills, Nilgiri Hills, Biligiri 87 

Rangana Hills (BR Hills), Anamalai Hills, Pandalam Hills and Agasthyamalai Hills are the 88 

significant landscapes within the SWG. The highest peak in the WG, the 'Anamudi' (2695m 89 

altitude), is within the Anamalai Hills. The high elevation locations (above 1400m) of the SWG 90 

support a  unique montane habitat known as shola forests, a mosaic of forests restricted to 91 
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the mountain folds and surrounded by rolling grasslands in the valleys18. The shola forests are 92 

considered the best suitable habitat for both BOF and NIF20ς22.  93 

2.2. Occurrence data collection and processing 94 

We obtained the occurrence records of BOF and NIF from the eBird33 which also included the 95 

data from recently concluded (2015-2020) Kerala Bird Atlas (KBA)32 data. The KBA provides 96 

gridded bird occurrences collected from across Kerala and uploaded to the eBird database. 97 

The eBird data published after multi-level, rigorous review processes33, thereby enabling its 98 

usage for various scientific analyses, including the species distribution modelling and 99 

conservation planning34ς37. There are other occurrence data of both species available on 100 

multiple platforms like iNaturalist and India Biodiversity Portal, but they lack a reliable vetting 101 

process, and hence we did not use those data for this study. A total of 893 and 1395 unique 102 

occurrence points were obtained for BOF and NIF, respectively, from the eBird primary 103 

dataset (version: EBD_relJan-2021). 104 

We downloaded vetted eBird data and filtered it as detailed below: we (a) included all 105 

checklists having traveling and stationary protocols (b) excluded all checklists with more than 106 

or equal to 300 minutes of duration (c) excluded all checklists if the travelled distance was 107 

5km or more (d) also excluded those checklists with more than 10 observers38. The 108 

authenticity of the records was ensured by checking the review status and media availability. 109 

We removed the occurrence points without adequate supporting evidence from unusual 110 

habitats, unusual elevation or isolated locations from the analysis. We used spatial thinning 111 

to avoid overfitting the model by spatial clustering of occurrence data due to the spatial 112 

coverage bias of the citizen science dataset39,40. Occurrence data was thinned at 2km 113 

resolution by using 'spThin'41 in R version 4.0.342. 114 
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2.3. Environmental variables 115 

Environmental variables and other factors like behaviour, competition etc., are the core 116 

determining factors of the species distribution28,43. Based on the available data, 19 bioclimatic 117 

variables44 were downloaded from the Climatologies at High-resolution for the Earth's Land 118 

Surface Areas (CHELSA) climate data45. The digital elevation model (DEM) was obtained from 119 

the Global data (GTOPO30) available with the United States Geological Survey database. 120 

Aspect and slope extracted from the DEM by using QGIS 3.16. We obtained Enhanced 121 

Vegetation Index (EVI) layers for the years 2011 to 2020 from the United States Geological 122 

Survey (USGS) database. We utilized EVI data to create following layers in ArcGIS:  average 123 

EVI (evi_avg), EVI in peak monsoon, June-August (evi_mon) and EVI in peak summer, March-124 

May (evi_dry). All variables were set to a spatial resolution of 30 arc seconds (~1 km) and the 125 

projection of World Geodetic System 84 EPSG:4326 (WGS 1984). We eliminated the variables 126 

with high correlation (Pearson correlation coefficient, | r|  > 0.75) to avoid 127 

multicollinearity46,47. We selected the variables with multicollinearity below the threshold.  128 

2.4. MaxEnt Modelling  129 

Maximum entropy algorithm implemented in MaxEnt version 3.4.448,49 was used to 130 

determine the distribution pattern (current and future) of BOF and NIF. We used the 131 

ENMeval50 R package to get an initial model suggestion based on the Akaike Information 132 

Criterion (AIC) and associated model settings. Value of regularisation multiplier and number 133 

of background points was also determined with the ENMeval tool. The model with the lowest 134 

AIC value was selected from the different model suggestions and chose the preliminary 135 

model. We built the initial model using MaxEnt and calculated the contribution and 136 

permutation importance of variables. We discarded the lowest contributing and permutation 137 

importance variables, re-ran the model with different MaxEnt features and regularisation 138 
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multiplier, evaluated with the ENMeval tool, and noted the change in the AIC value. We 139 

identified the model with the low AIC value as the best performing model. Different sets of 140 

variables were used for BOF and NIF, based on the model performance evaluation. We ran 141 

the MaxEnt program with ten folds of cross-validation, with the number of background points 142 

set as 10000 and iterations as 5000 for both species. 143 

The 'complementary log-log' (cloglog) was selected as the MaxEnt output type, which is the 144 

most appropriate format for estimating the probability of species presence48. Importance of 145 

the predictor variables in the model building and species suitability determining variables 146 

understood by estimating the permutation importance of the variables and the test gain of 147 

the jackknife analysis ς both the estimates present in the MaxEnt output. 148 

2.5. Future simulations  149 

The future distribution of BOF and NIF were predicted under different Representative 150 

Concentration Pathways (RCPs) (4.5 and 8.5) for the year the 2050s (2041-2060). Future 151 

bioclimatic variables and static variables like DEM were used to predict the future 152 

distributions. We removed the EVI layers from the analysis due to the unavailability of future 153 

EVI values. To compare future simulations with the current scenario, we developed a separate 154 

model that excludes EVI layers. We selected ESMs with dissimilar model constructing codes 155 

and that help to reduce the uncertainty in future predictions51,52. The three different Earth 156 

System Models (ESMs) under Coupled Model Intercomparison Project Phase 5 (CMIP 5), the 157 

Beijing Climate Centre Climate System Model 1.1 (BCC CSM1.1), Model for Interdisciplinary 158 

Research on Climate version 5 (MIROC5) and Hadley Centre Global Environmental Model 2 ς 159 

Earth System (HadGEM2-ES) were used for the analysis. We calculated the average of the 160 

three models by the raster calculator tool in QGIS.  161 
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2.6. Model performance evaluation  162 

One of the criteria to assess model performance is the area under the receiver operating 163 

characteristic curve (AUC). It measures how well a parameter can be distinguished between 164 

two diagnostic groups (random and background points). AUC can be calculated from the 165 

receiver operating characteristic (ROC) curve by plotting the sensitivity against '1 ς specificity' 166 

across the range of possible thresholds. The AUC ranges from 0 to 1, and the best performing 167 

model indicated by values close to one or one. It is not good to evaluate the model 168 

performance with the AUC value alone because it is not entirely reliable and informative49. 169 

Another model evaluation measurement is the True Skill Statistic (TSS), defined as 'sensitivity 170 

+ specificity ς 1'. TSS ranges from -1 to +1, and values nearer to one or one indicates high 171 

accuracy of the model. We used AIC, AUC and TSS for model performance evaluation 172 

(Supplementary Table 1) for this study.  173 

2.7. Species suitability calculation 174 

The cloglog outputs converted into a binary raster based on the 'Maximum test sensitivity 175 

plus specificity cloglog threshold' (max SSS) value53. The value below the threshold considered 176 

as unsuitable areas for the species and values above the threshold as suitable. We calculated 177 

the species suitability changes using the raster calculator tool in the QGIS application by 178 

subtracting the current binary map from the future binary maps. We calculated the change in 179 

suitable areas by subtracting the current binary map from the future binary maps using the 180 

raster calculator tool in the QGIS. We interpreted the values of the subtracted layer and 181 

identified areas of no change in suitability (both future and current maps having the same 182 

value for the overlapping cells), predicted increase in suitable areas in future (gain of suitable 183 

area), and predicted decrease in suitable area in future (loss of suitable area)  184 

3. Results 185 
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3.1. Modelling 186 

We had 194 records of BOF and 300 records of NIF after spatial thinning of occurrence 187 

data (Figure 2). Mean diurnal range (BIO 2), isothermality (BIO 3), mean temperature of 188 

coldest quarter (BIO 11), Precipitation of Driest Month (BIO 14), precipitation of wettest 189 

quarter (BIO 16), precipitation of warmest quarter (BIO 18), aspect, slope and evi_avg 190 

were used for the preliminary model construction of BOF and BIO 2, BIO 3, BIO 11, 191 

precipitation of wettest month (BIO 13), BIO 14, BIO 18, aspect, slope and evi_avg for the 192 

preliminary model building of NIF. For the final model construction for the BOF, we used 193 

BIO 3, BIO 11, and slope, but for the NIF, BIO 3, BIO11, BIO 14, BIO 18, slope and evi_avg 194 

were used (Table 1, Supplementary Table 2). 195 

3.2. Important environmental variables 196 

We identified the BIO 11 as the most crucial variable for both BOF and NIF for the climate 197 

suitability prediction. It has more than 90% of permutation importance and high-test gain in 198 

the jackknife analysis. Isothermality and slope did not contribute much to the model building. 199 

They did not have any permutation importance in the model construction for both BOF and 200 

NIF, but they did play a role in model predictive power based on the jackknife test result (Table 201 

1, Supplementary Figure 1, Supplementary Figure 2, Supplementary Figure 3). Therefore, 202 

model building without these variables leads to a higher AIC value than the currently selected 203 

model.  204 

3.3. Current suitability 205 

For the BOF, the best model (AIC = 3668.34) contained three variables (Table 1), and the 206 

model predicted 6532 km2 (threshold = 0.609) as suitable for the BOF within the WG (Figure 207 
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3). Out of the total suitable area, 61.20% distributed in the south of the Palakkad Gap and the 208 

remaining areas in the north of the Palakkad Gap. The model also predicted some new and 209 

hitherto unknown suitable locations in Talakaveri WLS and Pushpagiri WLS in Karnataka for 210 

the BOF. Out of the total suitable area for the BOF, only 26.50% distributed inside the 211 

protected area network, and nearly 75% of its suitable area lies outside the protected area 212 

network in the region. 213 

For the NIF, the best model (AIC = 6052.20) included six variables (Table 1). A total of 12,707 214 

km2 (threshold = 0.631) comes as the suitable area for the NIF (Figure 3). Out of this, 52.30% 215 

distributed to the southern part of the Palakkad Gap and the remaining on the northern side 216 

of the Palakkad Gap. Similar to the BOF, in the case of NIF also, nearly 75% of its suitable area 217 

lies outside the protected area network of the WG. However, the model predicted some 218 

potentially suitable areas in Kudremukh NP, Pushpagiri WLS, Talakaveri WLS, Cauvery WLS, 219 

and Biligiri Rangaswamy Temple WLS where the species has not been reported so far.  220 

3.4. Future suitability changes  221 

Future predictions for the BOF indicate a 30.82% loss of suitable area under RCP 8.5 (Table 2). 222 

Therefore, noticeable suitability contraction would occur in the Anamalai and Agasthyamalai 223 

Hills in RCP 4.5 and RCP 8.5 scenarios. On the other hand, future predictions also suggest that 224 

the BOF would be gaining some newly suitable areas in the Nilgiri Hills compared to the 225 

current suitability. The model also predicted the loss of 34% (RCP 4.5) to 46% (RCP 8.5) of the 226 

suitable area within the protected area network (Supplementary Figure 4).  227 

Future prediction models for NIF indicate the loss of suitability in both climate change 228 

scenarios, RCP 4.5 and RCP 8.5. The model predicted the extreme loss under RCP 8.5 (45.85%) 229 

(Table 2). We noted a loss of suitable areas throughout the speciesΩ ŎǳǊǊŜƴǘ ŘƛǎǘǊƛōǳǘƛƻƴ 230 
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extent. The suitability contracted within the protected area network by 34% (RCP 4.5) to 45% 231 

(RCP 8.5), according to the model predictions (Supplementary Figure 5). 232 

4. Discussion 233 

4.1.  Suitable areas of BOF and NIF 234 

The present study predicts the suitable locations along the high-altitude regions for two 235 

species of restricted distributed flycatchers in the Western Ghats, Black-and-Orange 236 

Flycatcher and Nilgiri Flycatcher. Among the two, the NIF has more widely distributed suitable 237 

areas available in the SWG. The BOF is more restricted to the high elevation pockets and is 238 

more isolated in distribution than NIF. There were few occurrence data available in the 239 

Brahmagiri Hills for both species54. In the case of NIF, the model predicted additional suitable 240 

areas in Biligiri Rangana Hills (BR Hills) but the species may not be found there because of the 241 

unavailability of montane habitat. Also, NIF is not a long-distance migrant and such predicted 242 

suitable areas are 50km to 100km away from the known range of the species. Regions within 243 

the Agasthyamalai Hills, Pandalam Hills, Anamalai Hills and Nilgiri Hills are the core habitats 244 

for both species of flycatchers. Both BOF and NIF have a high preference for the montane 245 

habitats 20,22. The current study also predicted the majority of suitable areas in the high 246 

elevation regions of the WG. The values of the permutation importance and jackknife test 247 

gain suggested that BIO 11 is the most crucial variable predicting suitable areas for both BOF 248 

and NIF.  249 

4.2. Suitable areas of BOF and NIF within the protected area network in the 250 

Western Ghats  251 

Out of the total predicted distributional range of BOF and NIF, only around 25% of the suitable 252 

areas distributed within the protected area network. Future climate change may threaten 253 
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more than 40% of the available suitable area for both the species. The most suitable locations 254 

for these two flycatchers in the Anamalai and Nilgiri Hills lie outside the protected area 255 

network. Specialised habitats like shola are under threat from various anthropogenic 256 

activities and invasive plant species. The loss of shola forests is slower in the existing 257 

protected areas but is very high in Reserve Forests19. Realigning the boundaries of the existing 258 

protected area network to include the suitable regions of the two species of the flycatchers 259 

may ensure the long-term conservation of both these flycatchers. Long term isolation of 260 

populations can even lead to the local extinction of the species55. The wildlife managers take 261 

actions to ensure the proper corridor connectivity between the isolated montane habitat for 262 

avoiding such extinctions. 263 

4.3. Climate change impact and suitability changes  264 

More net suitable area loss predicted for the NIF (35.90-45.85%) than for the BOF (20.47-265 

30.82%). We can observe the loss of suitable areas of the NIF in its entire range. But in the 266 

case of the BOF, loss of suitable locations occurs in the Anamalai, Pandalam and 267 

Agasthyamalai Hills compared to other regions. Several studies suggest that climate change 268 

can adversely affect several species and may lose their potential habitat, shift their range, or 269 

become locally extinct56,57. Montane habitat specialist species may react to climate change by 270 

elevational range shift58. But further elevational shift may not be possible for both BOF and 271 

NIF because they already exist in the highest elevation within the Western Ghats. Sukumar et 272 

al.11 predicted the deterioration of montane shola ecosystems and associated species 273 

extinction risks due to climate change. Land-use changes due to anthropogenic activities and 274 

climate change impacts may negatively affect the restricted distributed species like BOF and 275 

NIF.  276 
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4.4. Limitations of the study 277 

We obtained the occurrence points of both BOF and NIF from eBird, which is a citizen-based 278 

data collection tool33. The eBird data quality depends on the observer's identification skills, 279 

spatial and temporal coverage by participants, detectability of a species, rare bird recording 280 

method and the reviewer's care to vet the data59,60. Furthermore, we only used the variables 281 

related to climate, topography and vegetation. Other environmental factors that may also 282 

affect the species distribution61, like insect population density, fruit tree distribution etc., 283 

were not included in this study because of the unavailability of such data. Species-specific 284 

microclimatic studies are needed to standardise the variables for species distribution 285 

modelling.  286 

5. Conclusion 287 

We developed species distribution models for two endemic flycatchers, the Black-and-orange 288 

Flycatcher and Nilgiri Flycatcher, to understand the current potential suitability and the 289 

species' possible responses to future climate change with regards to changes in suitability by 290 

using maxent algorithm. The models predicted substantial loss of suitable areas under 291 

different climate change scenarios for both the species, which will be more severe for NIF 292 

than BOF.  293 

Moreover, about 75% of both the species' currently suitable areas lie outside the protected 294 

area network. Respective wildlife managers in Kerala, Karnataka and Tamil Nadu may need to 295 

take urgent actions to realign the boundaries of the protected area network by including 296 

suitable regions to ensure the long-term conservation of these two highly range-restricted 297 

species, the Black-and-orange Flycatcher and Nilgiri Flycatcher. These endemic species need 298 
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more specific conservation prescriptions, for which more detailed autecological studies need 299 

to be carried out urgently.  300 
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Tables 465 

Table 1. Percentage contribution and permutation importance of variables in the model 466 

construction 467 

Variable 

Black-and-orange Flycatcher Nilgiri Flycatcher 

Percent 
Contribution 

Permutation 
Importance (%) 

Percent 
Contribution 

Permutation 
Importance (%) 

Isothermality (BIO 3) 0.6 1 0 0 

Mean Temperature of Coldest 
Quarter (BIO 11) 

99.3 98.9 95.2 92.4 

Precipitation of Driest Month 
(BIO 14) 

- - 0.2 0 

Precipitation of Warmest 
Quarter (BIO 18) 

- - 2.4 4.2 

Slope 0.1 0 0 0 

Enhanced Vegetation Index 
(10-year Average) 

- - 2.2 3.4 

 468 

Table 2. Relative change in the area of suitable areas to the current predicted distribution 469 

under various climate change scenarios for 2050s 470 
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Black-and-orange Flycatcher 
4.5 0.603 51440 1465 128 5195 20.5 

8.5 0.606 50972 2037 24 4519 30.8 

Nilgiri Flycatcher 
4.5 0.613 59512 4911 21 8733 35.9 

8.5 0.613 58180 6255 9 7377 45.8 

471 
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Figures 472 

 473 

Figure 1. Landscapes and elevation bands of southern Western Ghats, India 474 

 475 
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 476 

Figure 2. Occurrence points used for the model construction of Black-and-orange Flycatcher 477 

and Nilgiri Flycatcher, southern Western Ghats, India 478 

 479 
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 480 

Figure 3. Predicted suitability of Black-and-orange Flycatcher (A) and Nilgiri Flycatcher (B) 481 

with the indication of suitable areas available within the protected area network 482 

 483 
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Supplementary Data 484 

Supplementary Table 1. Summary of the model performing indices of the preliminary and 485 

final selected model 486 
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Model 1 bio 2, bio 3, bio 11, bio 14, bio 16, 
bio 18, aspect, slope, evi_avg 

H/4 3690.69 0.722 0.899 

Model 2 bio 3, bio 11, bio 14, bio 16, bio 18, 
slope 

H/4 3694.02 0.713 0.904 

Model 3 bio 3, bio 11, bio 14, slope LQH/2 3668.34 0.706 0.913 

N
ilg

ir
i F

ly
ca

tc
h

e
r Model 1 bio 2, bio 3, bio 11, bio 13, bio 14, 

bio 18, aspect, slope, evi_avg 
LQHP/4 6062.40 0.602 0.825 

Model 2 bio 3, bio 11, bio 13, bio 14, bio 18, 
slope, evi_avg 

LQHPT/1.5 6064.85 0.564 0.813 

Model 3 bio 3, bio 11, bio 14, bio 18, slope, 
evi_avg 

LQH/4 6052.20 0.606 0.852 

Model 4 bio 3, bio 11, bio 14, bio 18, slope LQHPT/2.5 6090.42 0.569 0.841 
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Supplementary Table 2. Mean, maximum, minimum and standard deviation of variables 488 

used in the model construction 489 

Variable 

Blac-and-orange Flycatcher Nilgiri Flycatcher 
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Isothermality (BIO 3) (°C) 4.9 5.38/4.42 0.3 4.9 5.38/4.42 0.3 

Mean Temperature of Coldest 
Quarter (BIO 11) (°C) 

19.55 28.01/11.09 4.9 19.4 28.04/10.76 5.0 

Precipitation of Driest Month 
(BIO 14) (kg/m2) 

- - - 24 51.6/3.6 16.0 

Precipitation of Warmest 
Quarter (BIO 18) (kg/m2) 

- - - 318 609.6/26.4 168.6 

Slope 89.4 90.1/88.7 0.4 89.4 90.1/88.7 0.4 

Enhanced Vegetation Index 
(10-year Average) 

- - - 2987.5 6165.7/190.7 1837.7 
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Supplementary Figure 1. Jackknife test graphs showing the test gain of different variables 492 

used in the model building of Black-and-orange Flycatcher (A) and Nilgiri Flycatcher (B) 493 

 

 
 

 

 

 
 

Supplementary Figure 2. Response curves of variables used for the model building of Black-494 

and-orange Flycatcher 495 
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Supplementary Figure 3. Response curves of variables used for the model building of Nilgiri 496 

Flycatcher 497 
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 498 

Supplementary Figure 4. Future suitability changes of Black-and-orange Flycatcher under different climate change scenarios 499 
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 500 

Supplementary Figure 5. Future suitability changes of Nilgiri Flycatcher under different climate change scenarios 501 


