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Abstract

Climate change has been influencing bird species in different ways. Some documented

changes include reduction in geographic range, declines in abundancehandes in the
seasonalityof migratory bird species in spring after overwintering in the tropige
undertook a study on the two species of higkevation dependant, restrictedrange
flycatchers: Blacknd-orange Flycatcher (BOFjcedula nigrorufgJerdon, 1839and Nilgiri
Flycatcher (NIHtumyias albicaudatug@lerdon, 184Q)to find out how they repond tothe
predictedclimate changescenariosWe used 194 and 300 independent occurrence points for
BOF and NIF to develgiimate models and understand thepecies respores to climate
change scenariosising maxent algorithm We used isothermality, mean temperature of
coldest quarter and slope for developitite BOF model. Fahe NIF, we used isothermality,
mean temperature of coldest quarter, precipitation of driest month, precipitation of warmest
guarter, slope and enhanceatgetation indexThe mean temperature of coldest quarter (BIO
11) was the most crucial variable influencingimate suitability for boththe species. The

model predictedhe current extent of occurrence &f532km? as suitabldor BOFand 12,707
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kn? for NIF, withintheir ranges. However, mly 27%and 24% of thexisting suitable areaf
BOF and N|Respectivelyfalls within the protected area network in the Western Ghats
Future predictionsuggestsuitable aredossto the tune 0f20% to 3% for BOF and@6% to

46% for NF by 2050

Keywords:biodiversity hotspotsBlackand-orange Flycatchegrasslanesholg habitatloss

montane habitat,Nilgiri Flycatchemestricted range Species Distribution Modelling (SDM)

1. Introduction

Anthropogenic climate change and increased environmental degradaagput millions of
species at risk of extinctidnAs per the recent report of the Intergoverremtal Panel for
Climate Chande (IPCCanthropogenic activities will cause global temperature to rise by
1.2°C between 2030 and 2052 compared to-imdustrial leveld Erratic environmental
conditions declines in species abundancasd widespread extinctionsare some ofthe
significantpredicted effecs of climate change. An estimated % to8% of the vertebrate
species from across the world would lose half of their current suitable habitat if global
temperature increases by 1.5% 2°C. Therefore, climate change threatenbke global

biodiversity and ultimately the structure and ecosyst&mctioning3>°.

Mountain ecosystems, in particular, are more sensitive to climate change and are expected
to experience unprecedented rates of warming during thé& 2&ntury’. The climate on the
mountains rapidly changewith an elevation over a relatively short vertical distance, a feature
unique tothese ecosystenis Hence, these ecosystems avaluableindicators of climate

changé. The oscillating climateand unique floral structurein the montane ecosystems
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provide specialmicroclimatic conditions andhabitat for the speciesand such montane
ecosystens areknown as'sky islandd®1% The Western Ghats (WG), the region considered
one of the 36 biodiversity hotspots in the wotdsituated in southwest India and consists of
such sky islands. Palakkad Gap is the magmoditinuityin the entire stretch of thel600km

long WG The WG is also a World Heritage Site since 20aad two hill ranges in the
Western Ghats (Nilgiri Hills and Agasthyamalai Hills) have been recognised as Biosphere
Reserves Dby the United Nations Edud®nal, Scientific and  Cultural
OrganizatiofUNESC*'°. The WG mountain range exhibits high endemism with several
species restricted to a narrow elevational ratfyérhis specialised habitat is now gati
deteriorated due to changing climatic conditions and anthropogenic actitfti€sunder the
looming threat of global warming and climate change drivabitat loss, it is vital to assess

the fate of habitat specialists of the WG, so that remedial conservation strategies can be

planned

Blackand-orange Flycatcher (BORid¢edula nigrorufpand Nilgiri Flycatcher (NIFBumyias
albicaudatu$ are monotypicspecies endemic to the southern WG and confined to the higher
elevations. The BOF prefers the understorey of shola forests, espesiadlyilanthesand
bamboothickets among the stunted evergreen forest patches in the sky islantisedVG

and distribued above ~700m altitude but more commaround1500m and abov&2% The

NIF is also found above ~600m elevatlmit more frequently above 1200t Degraded
forestsandplantations of timber, teacoffee and cardamom adjacent to the foreseasare
also considered suitable habitat§hey mainly feed on invertebratelsowever the NIF also
consumes fruits and berries ®fcciniunspp, Syzygiunspp., Gstrumspp. etc?l. Both these
flycatchers are categorised agast Concer(LC) according to the IUCN Redfistand fall

under Moderateconservation concern as per tioeirrent Sate of Indids Birds repor®.

3
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It is essentialto know the effect of climate change on endemic species because of their
restricted distribution and specifihabitat requirement’. Species distribution models
(SDM) are practicaltools to understand the relationship between spec@surrenceand
environmentalfactorg’28. SDM also help determine the previously unknowreasof a
species fromthe known specie occurrence points andhe predictor variable$%3:,
Understanding the spatial distribution arfdture changes in the distributioof a species

would behelpful for longterm conservationandthe SDMis a valuabletool for that®2.

The main objectives of this study are, (B determine the environmental variables that
influence the distributiorpattern of BOF and NIF (i) determinethe extent ofsuitableareas
of BOF and Nlin the WG and (cJo predict the future changes itme climatic suitability of
the habitat of BOF and NIF acrake WG under differentlimate change scenarios for the

2050sby using species distribution modelling

2. Materials and methods
2.1. Background

The selection of background area is critical in SDM studies for better predictive power and
model performance. The background area should contain suitable habitats for the taxa in
guestion and consider thgpecies' abilityo disperal. In this studywe slected the southern
Western Ghats (SWG) (8° to 13.58h 75 to 77.5FE) as background in which the entire
distribution of both speciess included Figurel). The Bramagiri Hills, Nilgiri HillBiligiri
Rangana Hills (BR Hill®ynamalai Hills, Pandalam Hills and Agasthyamalai Hills are the
significantlandscapesvithin the SWG. The highest peak in the WG, '‘thieamudi (2695m
altitude), is within the Anamalai Hills. The high elevation locations (above 1400m) of the SWG

support a unique montane habitat known asholaforests a mosaic of forests restricted to
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the mountain folds and surrounded by rolling grasslands in the véllelise solaforests are

considered the best suitable habitat for both BOF and®f-

2.2. Occurrence dataollection and processing

We obtained the occurrence records of BOF arféfitém the eBird®which also included the
data from recently concluded (2042020) Kerala Bird Atlas (KBAJata. The KBA provides
gridded bird occurrences collected from across Kerala and uplotd#ee eBird database.
The eBird data published after mulével, rigorous review process€sthereby enabling its
usage for various scientific anadgs including the specieglistribution modelling and
conservation planning<®’. There are other occurrence datf both speciesavailable on
multiple platformslike iNaturalistand India Biodiversity Portdbut they lack aeliablevetting
processand hence we did not use those data for this study. A total of 893 and 1395 unique
occurrence points were obtained for BOF and,Né&Spectively from the eBirdprimary

dataset (version: EBD_rel3aa21).

We downloaded vetted eBird data and filtered it dstailed below we (a) included all
checklists havingravelingandstationaryprotocols (b) excluded all checkistith more than

or equal to 300 minutes of duration (c) excluded all checklists if the travelled distance was
5km or more (d) also excludethose checklists with more than 10 obsenirsThe
authenticity of the recordsvasensured by checking the review status and media availability.
We removed lhe occurrence points withouadequate supporting evidencdrom unustal
habitats unusual elevatiomr isolated locatios from the analysisWe usedspatial thinning

to avoid overfittingthe model by spatial clustering of occurrence data due to the spatial
coverage bias of the citizen science datds# Occurrence datavas thinned at 2km

resolution by usingspThir*!in R version 4.0%3
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2.3. Environmental variabke

Environmental variableand other factors like behaviour, competition efare the core
determining factors ofhe species distributiof?43 Based on the available data, 19 bioclimatic
variable$* were downloaded fromthe Climatologies aHigh-resolution for theEarth's Land
QirfaceAreas(CHELSAjlimate datd®. The digital elevation model (DEMasobtained from
the Global data (GTOPO30) available with the United Stamsogical Survey database.
Aspect and slopeextracted from theDEM by using QGIS 3.16/e obtained Enhanced
Vegetation Index (EVI) layers for the years 2011 to 2020 from the United States Geological
Survey(USGS) database. We utilized EVI data to create following lay&reGiS: average
EVI (evi_avg), EVI in peak monsoon, JAmgust (evi_mon) and EVI in peak summer, March
May (evi_dry. All variablesvere set to a spatial resolution of 30 arc secondsKri) and the
projection of World Geodetic System 84 EPSG:4326 (WGS Wg84)iminated he variables
with high correlation (Pearson correlation coefficienf,r] > 0.75) to avoid

multicollinearity*®4”. We selected the variables with multicollinearity below the threshold.

2.4, MaxEnt Modelling

Maximum entropy algorithm implemented inMaxent version 3.4.#84°% was used to
determine the distribution pattern (current and future) dOF and NIFWVe used he
ENMevaf® R package to get an initial model suggestion based on the Akaike Information
Criterion (AIC) and associated model settingsue of regularisation multiplier and number

of background points was also determined with the ENMeval fte model with the lowest

AIC value was selected from the differembdel suggestions andhosethe preliminary
model. We built the initial model using Maknt and calculated the contribution and
permutation importance of variables. We discarded twest contributing and permutation

importance variablesre-ran the modelwith different MaxEnt features and regularisation
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multiplier, evaluated with the ENMeval toaddnd notedthe change in theAIC valueWe
identified the model with thdow AIC valuas the best performing model. Different sets of
variableswere used for BOF and NIF, based on the model performance evalusitierran
the Maxént programwith ten folds of crossralidation, with the number of background points

set as 10000 and iterations &000 for both species.

The'complementary logog (cloglog)wasselected as thélaxent output type, which is the
most appropriateformat for estimating the probability of species preseffcémportance of
the predictor variables in the model building asgeciessuitability determiningvariables
understood by estimating the permutation importance of the variables and the test gain of

the jackknifeanalysis; both the estimates present in the M&t output.

2.5. Future simulations

The future distribution of BOF and NIkvere predicted under different Representative
Concentration Pathways (RCPs) (4.5 and 8.5) for the year the 2050s2(X2)1Future
bioclimatic variables and static variabléike DEM were used to predictthe future
distributions.We removed theEVI layers from the anadis due to the unavailability of future

EVI valuesl o comparduture simulations withthe current scenario, we developetseparate
model that excludes EVI layeie selected ESMs with dissimilar model constructing codes
and that help to reduce the uncginty in future prediction®-°2 The three differentzarth
System Model¢ESMs) under Coupled Model Intercomparison Project Phase 5 (GNHE 5
Beijing Climate Centre Climate System Model 1.1 (BCC CSM1.1), Model for Interdisciplinary
Research on Climate version 5 (MIROC5) and Hadley Centre Global EnvironmentaldModel 2
Earth System (HadGENES)were used forthe analysis We calculated theaverage of the

three modelsby the raster calculator tool in QGIS.
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2.6. Model performance evaluation

One of thecriteriato assess model performancetise area under the receiver operating
characteristic curve (AUQ) measureshow well a parameter cahe distinguisied between

two diagnostic groups (random and backgna points). AUC cabe calculatel from the
receiver operating characteristic (ROC) curve by plotting the sensitivity aadregecificity
across the range giossible thresholdsThe AUC ranges from O tpahdthe best performing
model indicated by values close to one or one. It is good to evaluate themodel
performance withthe AUCvaluealonebecause it is not entirely reliable and informati%e
Another model evaluation measurement is the True Skill Statistic (TS8gdafisensitivity

+ specificityg 1'. TSS ranges frori to +1, and values near to one or one indicats high
accuracyof the model. We used AIC, AUC and TSS for model performance evaluation

(Supplementary Tabl#) for this study

2.7. Speciesuitability calculation

The cloglog outputs converted into a binary raster based on'Meximum test sensitivity
plus specificity cloglog tBshold (max SSS) valkieThe value below the threshold considered

as unsuitablereasfor the species and values above the threshold as suit&Bécalculated

the species witability changes using the raster calculator tooltlre QGISapplicationby
subtracting the current biary map from the future binary map#/e calculated the change in
suitabk areasby subtracting the current binary map from the future binary maps using the
raster calculator tool in the QGIS. We interpreted the values of the subtracted layer and
identified areas of no change in suitability (both future and current maps having the same
value for the overlapping cells), predicted increase in suitat#asin future (gain ofuitable

ared), and predicted decrease in suitalaeeain future (loss obuitable aea)

3. Results
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3.1. Modelling

We had 194 records of BOF and 300 records ofaltéff spatial thinning of occurrence
data (Figure2). Mean diurnal rangéBIO 2, isothermality BIO 3, mean temperature of
coldest quarter(BIO 1), Precipitation of Driest Mont(BIO 14, precipitation of wettest
guarter (BIO 16, precipitaton of warmest quarte(BIO 18, aspect, slope and evi_avg
were usedfor the preliminary model construction oBOF and BIO 2, BIO 3, BIO 11,
precipitation of wettest monti(BIO 13, BIO 14, BIO 18, aspect, slope and evi_avinéor

preliminarymodel buildng of NIF.For the final model construction for the BOF, used

BI03, BIO 11, and slopéut for the NIF, BIO 3, BIO11, BIO 14, BIO 18, slope and evi_avg

were usedTablel, Supplementary Tabl2).

3.2. Important environmental variables

We identified theBIO 1lasthe mostcrucialvariable for both BOF and Niér the climate
suitability prediction It has nore than 90% opermutation importance and higtest gain in
the jackknifeanalysislsothermality and slope did not contributeuchto the model building
Theydid not have any permutation importance in the model constructfon both BOF and
NIF, but they did play a role in model predictive power based on the jackknife test(fieesik
1, Supplementary Figur&, Supplementary Figur@, Supplementary Figur8). Therefore,
model building without these variables leads to a higher AIC valuettigacurrently selected

model.

3.3. Current suitability

For the BOF, the best model (AIC = 3668.34) contained three varidlalele 1), and the

model predicted6532 kn? (threshold = 0.609) as suitable for the B@Ehin the WG(Figure



208 3). Out of the total suitale area,61.20% distributed in thesouthof the Palakkad Gap artlle
209 remainingareasin the north of the Palakkad Gaffhe model also predicted some newnd
210 hitherto unknown suitable locations iTalakaveri WLS and Pushpagiri WLS in Karn&taka
211 the BOF Qut of the total suitable aredor the BOF,only 26.9% distributed inside the
212 protected area networkand nearly 75% of its suitablarealies outside the protected area

213  network in the region.

214  For the NIF, the best model (AIC = 6052.20) included six varidialglel). A total of 12,707

215 km? (threshold =0.631)comesasthe suitableareafor the NIFFigure3). Out ofthis, 52.30%

216 distributedto the southernpart of the Palakkad Gap arlde remaining m the northern side

217 of the Palakkad Gaimilar tothe BOFin the case oNIFalsg nearly 75% bits suitablearea

218 lies outside the protected area netword the WG However, he model predicted some

219 potentially suitable areas in Kudremukh NP, Pushpagiri WLS, Talakaveri WLS, Cauvery WLS

220 andBiligiri Rangaswamy Temple Widsere thespecieshasnot beenreported so far
221 3.4. Future suitability changes

222  Future predictions for the BOF indicate a 30.82% loss of suitable area under RG®I@Z.(

223 Therefore, mticeable suitability contractiorwould occurin the Anamalai and Agasthyamalai
224  Hills inRCP 4.5 and RCP 8cgnariosOn the otherhand,future predictions also suggest that
225 the BOF would be gainir@pme newly suitable area in the Nilgiri Hillscompared to the
226  current suitability The model also predicted the loss of 34% (RCP 4.5) to 46% (RCPh&.5) of

227 suitable areawithin the protected area networkSupplementary Figuré).

228 Future prediction models for NIF indicate the loss of suitability in both climate change
229 scenariosRCP 4.5 and RCP.8be model predictedte extreme lossinder RCP 8.5 (45.85%)
230 (Table2). We noted aloss of suitableareas throughout the speci®& OdzNNBy i RA ad N
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extent The suitability contractedithin the protected area networky 34% (RCP 4.5) to 45%

(RCP 8.5|ccordng to the model predictionéSupplementary Figurg).

4. Discussion

4.1. Suitableareasof BOF and NIF

The present study predictsthe suitable locations along the higddtitude regions fortwo
species of restricted distributed flycatchers the Western Ghats, Blaeknd-Orange
Flycatcher and Nilgiri Flycatcher. Among the tihe NIF has more widely distributed suitable
areasavailablein the SWG. The BOF is more restricted to the high elevation pockets and is
more isolated in distribution than NIF. There were few occurrence data available in the
Brahmagiri Hills for both specfésin the case of N|fhe model predictecdditionalsuitable
areasin Biligiri RanganHlills(BR Hills) but the species may not be found there because of the
unavailability of montane habitafAlso, NIF is not a loAdjstance migrant anduchpredicted
suitable areas are 50kto 100km away from the known range of the specksgions within

the Agasthyamalai Hills, Pandalam Hills, Anamalai Hills and Nilgiri Hills are the core habitats
for both specief flycatchers Both BOF and Nhrave ahigh preferencefor the montane
habitats 2922, The current study alsgredicted the majorty of suitable areas in the high
elevation regions of the W(GThevalues of the permutation importance and jackknife test
gain suggested that BIO 11 is the mosicialvariablepredictingsuitableareasfor both BOF

and NIF

4.2. Suitable areasof BOF and NIwithin the protected area network in the

Western Ghats

Out of the totalpredicteddistributional range of BOF and NIF, carlgund25% of the suitable
areasdistributed within the protectedarea network.Future climate change may threaten

11



254  more than 40% fthe available suitable ardar both the speciesThe nostsuitablelocatiors

255 for these two flycatchers in the Anamalai and Nilgiri Hills lie outside the protected area
256 network. Specialised habitats likehola are under threat from various anthropogenic
257 activities and invasive plant species. The loss of shola forests is slowke iexisting

258 protected areas but is very high in Reserve Fotédkealigning théoundaies of theexisting

259 protected area networko include the suitableegiors of the two species of the flycatchers
260 may ensure the longerm conservation oboth these flycatchers. Long term isolation of
261 populations can even lead to the local extinction lé specie®. The wildlife managers take
262 actions to ensure th@roper corridor connectivity between the isolated montane habitat for

263 avoiding such extinctions.

264 4.3. Climate change impact and suitability changes

265 More netsuitable aredoss predicted for the NIF (35.915.85%) than for the BOF (20-47

266  30.82%)We can observéhe loss of suitablereasof the NIF inits entire range. But in the

267 case of the BOF, loss alitable locationsoccurs in the Anamalai, Pandalam and

268 Agasthyamalai Hills compared to other regions. Several studies suggest that climate change
269 can adverselgffect several species and may lose their potential habitat, shift their rarge

270 become locally extinét>”. Montanehabitatspecialist speciemay react to climate change by

271 elevational range shift. But further elevational shiftnay not be possible for both BOF and

272  NIF because they already exist in the highest elevation within the Western Ghats. Sukumar et
273 all! predicted the deterioration of montane shola ecosystems and associated species
274  extinction risks due to climate change. Lamgk changedue toanthropogenic activitiesral

275 climate change impacts may negatively affewt restricted distributed species like BOF and

276 NIF.
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4.4, Limitations of the study

We obtained theoccurrence point®f both BOF and NIFom eBird, which is a citizelmased

data collection tool®. The eBird data qualitgdepends on tke observer's identification skills,
spatial and temporal coverage by participants, detectability of a species, rare bird recording
method andthe reviewets careto vet the dat&®%% Furthermore,we only usedhe variables
related to climate, topography and vegetation. Other environmental factors that relag
affect the species distributioft, like insect population deity, fruit tree distribution etc.,

were not included in this study because of the unavailability of such data. Syspaeiic
microclimatic stidies are neededto standardise the variables for species distribution

modelling.

5. Conclusin

We developedpecies distributiomodels for two endemic flycatchers, the Bleakd-orange
Flycatcher and Nilgiri Flycatcher, to understand the curneoiential suitability and the
speciespossible responses toiture climate change with regards to changes in suitalty
using maxent algorithmThe models predictegubstantialloss of suitable areasnder
different climate change scenaridsr both the species which will be more severe for NIF

than BOF.

Moreover, about 75% dboth the species' currently suitable arelgsoutside the protected
area network. Respective wildlife managers in Kerala, Karnataka and Tamil Nadu may need to
take urgent actions to realign the boundaries of the protected anmeetwork by including
suitableregiors to ensure the longerm conservation of these two highly rangestricted

species, the Blae&nd-orange Flycatcher and Nilgiri Flycatcher. These endemic species need

13
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more specific conservation prescriptions, for which more detailed autecological studies need

to be carried out urgently.
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465 Tables

466 Tablel. Percentage contribution and permutation importance of variables in the model

467 construction

Blak-and-orangeFlycatcher Nilgiri Flycatcher
Variable Percent Permutation Percent Permutation
Contribution Importance (%) Contribution | Importance (%)

Isothermality (BIO 3) 0.6 1 0 0
Mean Temperature of Coldeg
Quarter (BIO 11) 99.3 98.9 95.2 92.4
Precipitation oDriest Month ) i 0.2 0
(BIO 14) '
Precipitation of Warmest
Quarter (BIO 18) i i 2.4 42
Slope 0.1 0 0 0
Enhanced Vegetation Index ) i 29 34
(10year Average) ' '

468

469 Table2. Relative change ithe area of suitablareasto the current predicted distribution

470 under various climate change scenarfios2050s

Species

RCP Scenario
Threshold
No change
UnsuitableArea
SuitableArea
Total predicted suitablearea
(km?)
Percentage of Range
Contraction

45 | 0.603 | 51440 | 1465 | 128 | 5195 20.5
85 | 0.606 | 50972 | 2037 24 4519 30.8
45 | 0.613 | 59512 | 4911 21 8733 35.9
85 | 0.613 | 58180 | 6255 9 7377 45.8

Blackand-orange Flycatcher

Nilgiri Flycatcher

471
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477  Figure2. Occurrencgoints used for the model construction of Blacid-orange Flycatcher

478 and Nilgiri Flycatchesouthern Western Ghats, India
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485
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487

Supplementary Data

Supplementary Tablk Summary of the model performing indices of the preliminary and

final selected model

— (@)
O =
. < ©
= |z 2
= g (@) 8
> —_ =
= = n | ST
c o n ‘©
S c = o 9
= o ~ O 2
o & = O = 3
s .2 g @ 29
o 2 = 17 o -2
4 w 2 c = S o
0 Q = 2 = = € =
2 | 2 s 2 % >
O S o < O = o © =
g | 8 5 3 9 g = g8
) = > = > < = <G
Model 1 | bio 2, bio 3, bio 11, bio 14, bio 16, | H/4 3690.69| 0.722 | 0.899
o bio 18, aspect, slope, evi_avg
S &
3 5
'8 ©| Model 2 | bio 3, bio 11, bio 14, bio 16, bid, | H/4 3694.02| 0.713 | 0.904
_Szj 2] slope
c
s}
Model 3 | bio 3, bio 11, bio 14, slope LQH/2 3668.34| 0.706 | 0.913
5 | Model 1 | bio 2, bio 3, bio 11, bio 13, bio 14, | LQHP/4 | 6062.40| 0.602 | 0.825
§ bio 18, aspect, slope, evi_avg
S | Model 2 | bio 3 bio 11, bio 13, bio 14, bio 18, LQHPT/1.5 6064.85| 0.564 | 0.813
= slope, evi_avg
Z% Model 3 | bio 3, bio 11, bio 14, bio 18, slope, | LQH/4 6052.20| 0.606 | 0.852
= evi_avg
Model 4 | bio 3, bio 11, bio 14, bio 18, slope | LQHPT/2.5 6090.42| 0.569 | 0.841
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488

489

490

491

Supplementary Tab Mean, maximum, minimum and standard deviation of variables

used in the model construction

Blacand-orange Flycatcher

Nilgiri Flycatcher

g 15 s 15
Variable ;E < E 2
2 a 2 a
E e £ e
c £ 2 < £ g
o s I o 3 IS
= p= ] = = "
Isothermality (BIO 3fC) 49 5.38/4.42 0.3 49 5.38/4.42 0.3
Mean Temperature of Coldes
Quarter (BIO 11(°C) 1955 | 2801/11.09 4.9 194 28.04/10.76 5.0
Precipitation of Driest Month
(BIO 14)kg/m?) - - - 24 51.6/3.6 16.0
Precipitation of Warmest
Quarter (BIO 18kg/m?) 318 609.6/26.4 168.6
Slope 89.4 90.1/88.7 0.4 89.4 90.1/88.7 04
Enhanced Vegetation Index| - - | 2987.5| 6165.7/190.7 | 1837.7
(10year Average)
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492  Supplementary Figurk Jackknife test graphs showing the test gain of different variables
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499 Supplementary Figuré Future suitability changes of Blaakd-orange Flycatcher undélifferent climate change scenarios
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500

501 Supplementary Figure Future suitability changes of Nilgiri Flycatcher under different climate change scenarios
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