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Abstract: Due to rising interest in wind energy harvesting offshore as well as in the urban environment, 

vertical axis wind turbines (VAWTs) have recently received renewed interest. Their omni-directional ability 

makes them a very fascinating choice for use with the frequently varying wind directions. The main concern 

in this turbine is self-starting at low wind speed, turbulence and stability issues at very high wind speed. 

Under such conditions, pitch angle is a potential parameter to enhance the performance of VAWTs. Thus 

pitch control systems becomes essential parts of VAWTs. The current work presents a detail over view of 

various pitch control configurations in VAWT. Various research work carried out in this field has been 

studied critically and the stream field around the blade, features of various pitch control systems, their merits 

and demerits have also been discussed. 
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1. Introduction 1 

Owing to the ever-rising interest in the versatile electrical power, with reducing and polluting fossil fuel 2 

resources, the new and sustainable sources of energy are under genuine thought [1]. Wind energy creates 3 

no pollution and generates no greenhouse gases while processes such as carbon dioxide and methane [2, 3].  4 

 In 2016 and 2017, the new wind energy capacity extended up to 54.6 GW and 52.6 GW respectively [4,5] 5 

2018 was a good year for the global wind industry with 51.3 GW of new wind energy installed, a minor 6 

fall of 4.0 percent w.r.t. 2017, [6] The whole capacity of all wind turbines installed globally by the end of 7 

2018 touched 597 GW. Throughout the last few years, wind power schemes were established rapidly due 8 

to the enthusiastically appeal of renewable energy. By the end of 2019, the wind power capacity is 9 

predictable to reach 666.1 MW [7]. 10 

 11 
Fig. 1. Global wind industry with 51.3 GW of new wind energy installed in the year 2018 [6]. 12 

The worldwide vertical axis wind turbine market to rise at a Compound annual growth rate (CAGR) of 13 

14.98% during the period 2018-2022 [8]. 14 

Wind turbines have been historically known to be mounted in open rural areas but nowadays, there has 15 

been expanding attention for the VAWTs in urban zones [9]. HAWTs have for quite some time been used 16 

in huge-scale farms of wind, as well as more productive than VAWTs in the stable wind but in the small 17 

scale, HAWTs take additionally existed progressively actualized at manufactured situations. Although, 18 

recent several analyses keep demonstrated that in urban zones VAWTs achieve better whenever relating 19 

over HAWTs. The HAWT farms are normally found far from populated regions and depend on the 20 
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horizontal non-turbulent wind profiles [10]. Moreover, in urban zones the wind is violent and uneven with 21 

quick varies in direction and speed [11]. In these conditions, the VAWT has a few favourable circumstances 22 

over HAWT [12]. The variability of the wind source considering, that the wind turbine will be over-burden 23 

and crash down the electric structure and the mechanical structure of when too high wind speed blows and 24 

the turbine is still functioning at a [13]. In small to medium scale wind turbines in the urban condition the 25 

VAWT is feasible with its utilization [14]. Recently have VAWTs gotten expanded exploratory, numerical, 26 

and systematic consideration, a pattern that is inferable from their capacity to accomplish useful power 27 

generation yet with less noise [15]. The Savonius rotor is a vertical axis wind turbine that works under a 28 

differential drag between its containers. The Savonius rotor is promising answer for low wind speed 29 

conditions, however it's efficiency is low [16]. The basic physics behind the power generation of VAWTs 30 

is substantially more difficult as compare with HAWTs [17-23]. 31 

Not at all like both HAWTs, VAWTs are at present intended to work at constant rotational speed for the 32 

most part because of effortlessness and expenses [24-26].  33 

Utilizing the VAWT technology for huge power generation activities was mostly unnoticed because of their 34 

lower efficiencies w.r.t. the technology of HAWT. However, variable-pitch Darrieus VAWT mechanism 35 

design, also called giro mill having about 0.5 coefficient of power (CP) [27-29] as compare to the HAWT. 36 

 37 

Moreover, while VAWTs have lower aerodynamic efficiency, there is some proof that VAWTs can be 38 

situated nearer together in wind farms giving a higher power concentration because of lower wake 39 

interference [30]. Nevertheless, the aerodynamic performance of VAWTs is currently poorer than HAWTs 40 

[31–34].  41 

Vertical axis wind turbines (VAWTs) have reappeared as promising energy conversion appliances due to 42 

a multiplicity of spic and span strategies that can advance as far as possible [35–40]. Also, the effect of 43 

different geometrical parameters and operational parameters on the aerodynamic performance of VAWTs 44 

should be extensively portrayed. The geometrical parameters incorporate number of blades [41–43], 45 

http://www.sciencedirect.com/science/article/pii/S0167610515000136
http://www.sciencedirect.com/science/article/pii/S0167610515002263


Unedite
d ve

rsi
on publish

ed onlin
e on 27/8/2020

5 

 

solidity [44–46], airfoil shape [47–48], blade pitch angle [49] and turbine shaft [50] Mertens et al. 46 

recommended such a conditions of twisted flow, the airfoils depend just on the symmetrical segment of the 47 

approaching wind speed by lift and drag forces generated, though the parallel part adds to the zero impact 48 

on the outside of the airfoils. This is known as the cross-flow principle [51, 52], either wind speed represents 49 

the cooperating with the vertical rotor blades slanted flow to turn into a factor of both the skew angle of 50 

and the induction factor stream tube. [53, 54] In certain examinations, for the VAWT the cambered airfoil 51 

is ideal because the turbine's efficiency in energy extraction might be impeding of virtual camber impact 52 

[55, 56]. In some current examinations, in a violent atmosphere, the type of vertical wind rotors can work 53 

effectively more [57–61].  54 

The vertical axis wind turbine blade is expected to upgrade by dynamic pitch structure to improve the whole 55 

rotor implementation were made by [62–64] Comparable perceptions. Dynamic pitching has as of late 56 

gotten enthusiasm as a promising answer for execution enhancement [65-67]. For this situation, the pitch 57 

angle of every blade changes with the azimuthal position. The ideal pitch angle appropriation over a 58 

transformation can be resolved from high-loyalty CFD simulation or explores and will by and large be 59 

unique in relation to the traditional cyclic pitching previously researched for VAWTs [68, 69]. 60 

What type of impact of pitch angle on power execution and aerodynamic features of a VAWTs was 61 

considered by Rezaeiha et al.[49, 70] In request to get the aerodynamic force for the basic plan of the blade, 62 

the Double Multiple Stream Tube (DMS) code has been included [71, 72]. 63 

A standout among the most essential control mechanism of a wind turbine is the pitch control, which directs 64 

control over the rated wind speed and protects blades during very high wind speed. [73]. If torque ripple of 65 

comparable virtual amplitude as simulated in Ref. [74] would be available on the shaft, it could influence 66 

the rotational speed of the generator rotor. [74]. If the rotation of the blade pitching is appropriately set in 67 

front of the focal point of force, at that point blade pitch drive will produce power as opposed to expending 68 

it. This produced power somewhat makes up for the expended power, with the goal that the mean power 69 

expected to impel the blade during a turbine's upheaval is least [75]. As an outcome, the pitching guideline, 70 

which can restrain the power production and relieve turbine blades burdens actuated to the wind turbine 71 

http://www.sciencedirect.com/science/article/pii/S0957415816301155
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airfoil is critical by the Angle of Attack (AoA) change respectively, [76]. To improve VAWT execution a 72 

variable pitch mechanism is connected Through the variation of the angle of attack (a). A variable pitch 73 

angle control mechanism can be both of two principal classifications: passive or active [77]. Be that as it 74 

may, the VAWT execution to crumble at high TSRs causes huge pitch amplitude. It will prompt poor 75 

performance at low TSRs Then again, at high TSRs while a small pitch abundance is adequate to create 76 

great performance [78, 79] More VAWTs with variable pitch were tried small wind tunnels, either with 77 

passive mechanism [1, 9, 80, 81]. 78 

Along these lines, poor self-starting limit and low productivity are real advancement problems for straight-79 

bladed VAWTs [82-84]. Subsequently, four classifications that measure changes were carried taken by 80 

engineers and researchers, which fall into: (i) Blade pitch control, (ii) Guide vane, (iii) Combined rotor, (iv) 81 

Special aerofoils [9]   82 

In addition, the improvement of the starting capacity the most effective way is the blade pitch control 83 

methods were observed. For a self-acting pitch control linkage system approach scheme is utilized to assist 84 

a multi-body and various pitch control scheme was discussed. With regards to the VAWT, during the 85 

procedure of rotation of the blade, the state of getting impacts is superior to that of the HAWT, because the 86 

directions of the inertial drive and gravity keep stable ever. 87 

Analysis of the aerodynamic performance of a vertical axis wind turbine with dissimilar sequence airfoil 88 

profiles. different types of airfoils and  different tip speed ratios were calculated to overpower coefficients: 89 

i) different maximum thicknesses but same maximum thickness position with symmetrical airfoils; ii) 90 

different maximum thickness positions but same maximum thickness with symmetrical airfoils, but; iii) 91 

different maximum cambers but same maximum camber position, same maximum thickness position, non-92 

symmetrical airfoils with same maximum thickness; iv) different maximum camber positions but same 93 

maximum camber, same maximum thickness position, non-symmetrical airfoils with same maximum 94 

thickness, The power coefficient of VAWT indicated inclination that discovered at first increment and after 95 

that lessening for symmetrical airfoils with same greatest thickness and same most extreme thickness 96 

http://www.sciencedirect.com/science/article/pii/S0306261911008026
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7237666&isnumber=7237445
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position with tip speed ratio increases. [85] For VAWT, wind tunnel analysis is likewise a positive strategy 97 

for survey the aerodynamic observes on the blade and around the rotor [86-88]. Performed wind tunnel 98 

tests to realize the impact of solidity at the various number of blades on aerodynamic forces around a 99 

straight-bladed VAWT. It was decided that power coefficient diminishes when solidity raises, while torque 100 

coefficients raise [89-92]. 101 

A new control method an internal model controller (IMC) and an individual pitch controller (IPC) based 102 

on the use of two supplementary controllers was proposed to reduce the vibrations of the tower and wind 103 

turbine overload, thus extending lifetime and performance of the turbine improves. To recognize the 104 

frequency of vibration on internal control model was used and the signal of the vibration mitigate a new 105 

control system established, in actual turbines cannot be determined accurately as the frequency of the 106 

vibration [93]. 107 

 108 
 109 

2. Summary of the pitch control mechanism of VAWT 110 

VAWT has been changing in blade pitch angle to produce maximum power. That kind of active or passive 111 

pitch control mechanism possible. Changing pitch too fluctuations the volume of torque and the angle of 112 

attack of the relative wind. Variable pitch gives more control choices than stalls control. Then again the 113 

hub is increasingly complexity because pitch variation behaviours must be integrated. In addition, some 114 

type of pitch actuation mechanism must also be involved. In specific wind turbines, just the external piece 115 

of the blade might be pitched [95] this is known as partial span pitch control. An outline of various 116 

techniques utilized on behalf of blade pitching scheme are as follows: 117 

Table 1 The VAWT comparison with HAWT. [94] 

 (VAWT) (HAWT) 

Ideal efficiency More than 70% 50–60% 

Noise production Quite Less Relatively high 

Self-starting capacity No Yes 

Whole construction Easy Difficult 

Blade’s action space Small Large 

Obstacle for birds Fewer More 

Ground height Lesser Big 

location of generator Ground level Top site 

Direction of wind Multisite Single site 

Yaw control mechanism No Yes 

Tower sway Small Large 

 

 

http://www.sciencedirect.com/science/article/pii/S1364032114002226
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• Passive pitch control  118 

• Active pitch control  119 

A Passive pitch control mechanism utilizes aerodynamic forces to activate self-starting components and 120 

workings via making pitching instant around blade axis turn such technique remains completely in the 121 

separate streamlined capacity adjust. On individual blade, behavior depends on the streamlined load adjust 122 

at a detailing of the pitch angle. To execute such technique preparation, so that this is hard to arrange an 123 

ideal component working scope of the VAWT. Specific wind situations the controlling mechanism 124 

exceptionally well performed. The VAWT industrially actualized not yet at this time however, found rather 125 

a theoretical scheme. The passive pitch control mechanism is another mechanism that utilizes load-balanced 126 

out or loads the spiral settled blade. A centrifugal force generated in which a mass go about as during 127 

rotation. The computational fluid dynamics (CFD) simulations using a promising way to inspect the 128 

complex phenomena that are present in an analysis of a VAWT with the pitch control mechanism [73]. 129 

An edge begins at a higher approach at lower speeds to delivering torque. When the rotational speed 130 

expands at the point, the load outwards is constrained, and to a decreased angle of attack, the blade is moved. 131 

The aggregate pitch control mechanism is liable in the individual blade pitch control technique, these issues 132 

of huge intricacy and vibration of plan parameters [96]. The individual pitch control mechanism for VAWT 133 

demonstrated streamlined execution of expansion in execution via 60%, for instance, contrasted and 134 

without pitch control usually VAWT. 135 

On the systems a detailed forecast perspective based model other side Model Predictive Control (MPC) 136 

control algorithm employed above to expect future production. At respectively compute operational the 137 

prediction of the control action over the horizon of sample an optimization difficulty is resolved. However, 138 

allowing for system controls is to compute the optimal control action with the advantage of using MPC. 139 

The procedure of wind energy conversion systems discrete-time MPC according to controllers have been 140 

suggested to control [97].  141 

http://www.sciencedirect.com/science/article/pii/S0957415816301155
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Moreover of three mechanisms in the pitch angle control strategy. The operational point of the pitch first 142 

mechanism μo the average wind speed at the hub height match up to angle that be determined. In the IPC 143 

action, the second mechanism μipc is to reduce the flap wise moment on individual blades. As in Ref. [98] 144 

in this action, the individual pitch control (IPC) action by using a conventional proportional plus integral 145 

(PI) controller. 146 

The collective pitch control (CPC) action μcpc is the third mechanism is to adjust the generator speed and 147 

power to be at their rated values is the main objective. Explicit continuous-time model predictive control 148 

(ECMPC) is the design of a tube-based for CPC. Up is the total pitch angle control action: 149 

UP = uo + uipc + ucpc                                                                                     ……… ……………………….(1) 150 

Where, the pitch angle Up in (1) features allowable scale level from 0 rad to 1.57 rad through of 0.139 151 

rad/sec maximum rate of change [99] The CPC action input limits can be leveled from (1) as: 152 

- uipc –uo + umin ≤ ucpc                                                                                                                           …………………………….….(2) 153 

- uipc –uo + umax ≥ ucpc                                                                                                                            ……………………………….(3) 154 

- ∆uipc –∆uo + αmin ≤ ∆ucpc                                                                                                           ………………………………(4) 155 

- ∆uipc –∆uo + αmax ≥ ∆ucpc                                                                                                              ……………………………..(5) 156 

umin and umax are the minimum and maximum values of the pitch angle, respectively. αmin and αmax are the 157 

minimum and maximum pitch angle rates of variation, respectively. Hence, the CPC action ucpc can be 158 

obtained by solving an optimization problem subject to the constraints in equation (2)-(5). 159 

The operating TSR (𝜆) is the main factor related to VAWT blades and wind speed is the main reason for 160 

the choice of the TSR, this can be written as [100].  161 

 λ =
ωrR

μ∞
                                                                                                              ……………………………….(6) 162 

Where 𝜔𝑟 is the rotor angular velocity, R is the rotor radius and μ∞ is the wind speed [97]. 163 
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 164 
 165 

Fig.2 Velocities and Forces action on the blade [101] 166 

The forces acting on each blade is determination can be predicted based on actual VAWT performance. 167 

The force and velocity vectors action on the blade of the Darrieus wind turbine shows in Fig. 2. The resultant 168 

velocity vector (W⃗⃗⃗ ) is the relative velocity that occurs by the induced velocity (U) and blade velocity (V) 169 

vectors. The velocity (V⃗⃗ ) is the tangential velocity vector of the wind turbine rotor. The angle between the 170 

direction of the resultant velocity and the blade chord line is typically known as angle of attack (α).  171 

The blade pitch angle 172 

β = α - φ                                                                                                  ……………………………….…(7) 173 

Where φ is representing the angle between the vector direction of V⃗⃗  and W⃗⃗⃗ . The function of the azimuth 174 

angle (θ) is both the angle of attack (a) and the relative wind speed (W) that fluctuate during each cycle. 175 

[102] 176 

For a VAWT with a fixed pitch angle (β = 0o) show the angle of attack α can be written as [103] :  177 

α = tan‐1(
cos θ

sinθ+λ
 )                                                                   …………..………….…….(8) 178 

The wind turbine pitch control mechanism can change the frequency of rotor blade in a wind power control 179 

framework in view of continuous wind speed with the area of modifying pitch control, accomplishing 180 

greater usage effectiveness of the power of the wind and provide protection to the rotor blade. Some kind 181 

of when the wind speed is lower than the rated speed, the blade angle remains close to the angle 0° the most 182 

striking force of the point, which is with a consistent pitch like that of a generator, creating a wind power 183 

that wind speed alongside progressions. Another side when wind speed is higher than the rated wind speed, 184 
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the pitch angle control configuration is modified the blade rate so that the wind turbine generator is 185 

permitted extent power to the inside. 186 

3. Various Experimental system with Pitch Control Mechanism 187 

 Elkhoury et al. assessed A 3-D review of the variable-pitch angle mechanism of the wind turbine is 188 

portrayed shows in Fig. 1. The diameter of 0.8 m and a height i.e. blade span of 0.8m of the turbine. The 189 

three straight blades VAWT each was associated by three fundamental roundabout bars with a diameter 190 

of 0.02 m each with the inside of the rotors. With the use of a four-bar linkage system is changing the 191 

pitch angle of three straight blade rotor. 192 

 193 
(a)                                 (b) 194 

Fig.3: An overview of the wind turbine modeled  195 
(a) Front view (b) Top view of the rotor [9] 196 

This mechanism has an unconventional rotational focus which is not quite the same as the standard point 197 

of the rotating turbine as appeared in Fig. 3. In such manner, this system can an unformed mesh was 198 

picked and that id suited for small applications with unpredictable geometry. The mesh technique was 199 

prepared finer in this area given the fact that persuasive components of the VAWT were being drawn 200 

nearer.  201 

 202 

http://www.sciencedirect.com/science/article/pii/S0167610515000136
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Fig. 4: Schematic sketch of the variable pitch angle system [9] 203 

The equation of the pitch angle in each quadrant governing the motion can be written as 204 

𝛼𝑝 = 𝜋
2⁄ − (𝛽 + 𝛾)  for 0 < 𝜑 < π, and 𝛼𝑝 = 𝜋

2⁄ − (−𝛽 + 𝛾) for 0 < 𝜑 < 2π,  205 

Where 206 

𝛼𝑝 = Blade pitch angle 207 

𝑙𝑐 = Blade link, 𝛼𝑐 = blade offset pitch angle, 𝛼𝑤 = the blade pitch angle amplitude 208 

𝑙𝑒 = The eccentric link, 𝑙𝑚 = the main link, 𝑙𝑠 = Second-link,  ∅ = the blade azimuth angle 209 

𝜃𝑝 = The angle between the wind direction and the eccentric-link 210 

d = Turbine diameter, h = Blade Span 211 

𝛽 = cos−1 𝑑2+𝑙𝑚
2 −𝑙𝑒

2

2𝑑𝑙𝑚
 ,   𝛾 =  cos−1 𝑑2+𝑙𝑐

2−𝑙𝑠
2

2𝑑𝑙𝑐
                                ..……………………... (9). 212 

 213 

For 𝛼𝑝 = 𝜋
2⁄ − 𝜀 for 𝜑 = 0    for 𝛼𝑝 = 𝜋

2⁄ − 𝛿 for 𝜑 = 𝜋 214 

Where,    𝜀 =  cos−1 (
𝑙𝑐
2+(𝑙𝑚−𝑙𝑒)

2−𝑙𝑠
2

2𝑙𝑐(𝑙𝑚−𝑙𝑒)
) ,                                                                  ………………………...(10) 215 

𝛿 =  cos−1 (
𝑙𝑐
2+(𝑙𝑚+𝑙𝑒)

2−𝑙𝑠
2

2𝑙𝑐(𝑙𝑚+𝑙𝑒)
)                                                                               ……………………..(11) 216 

The bars and shaft were treated with fine face sizing and swelling layers to precisely catch flow 217 

variations within the limit layer. Besides, a no-slip limit condition was set for all bars and shafts [9]. 218 

 Lixun et al. carried out the variable-pitch instrument comprises of four belt wheels, one servo motor, 219 

an anemoscope, and synchronous belt. At one of the blade using a servo motor and the left three blades 220 

were mounted by driving wheels those connected with the belt synchronously associated, as appeared 221 

in Fig.5.a. At the point when the anemoscope assembled the altars of wind direction, the servo motor 222 

drive every one of the blades to turn significant edge to preserve the best starting point, accomplishing 223 

the conveying the blade according to the wind speed [104]. 224 

http://www.sciencedirect.com/science/article/pii/S0167610515000136
http://www.sciencedirect.com/science/article/pii/S0167610515000136
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5748440&isnumber=5747667
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 225 
(a)                                     (b) 226 

Fig. 5. (a) Schematic concept sketch (b) Prototype of SB-VAWT with collective pitch control experimental setup [104] 227 

The instantaneous angle of attack 228 

𝛼𝜃 = 𝛾𝜃 − 𝛽𝜃                                                                                                                ………………………………...………(12) 229 

The Relative velocity                 230 

𝑊𝜃 =  𝑉𝜃√(𝜆𝜃 + cos 𝜃)2 + 𝑠𝑖𝑛2 𝜃                                                                                ……………..……(13) 231 

Where 𝛾𝜃, 𝛽𝜃, 𝑉𝜃 are the angle of incidence, local inflow speed and blade pitch angle respectively. 232 

Both 𝛼𝜃 and Wθ is the functions of azimuth angle θ. For the single blade the instantaneous driving 233 

torque  234 

𝑀𝜃 =
1

2
𝜌𝐶𝐻𝑅𝑊𝜃

2(𝐶𝑙  sin 𝛾𝜃 − 𝐶𝑑 sin 𝛾𝜃)                                                                    …………………………………..……(14) 235 

Where Cl and Cd are lift and drag coefficient, for convenience of comparison, the results are presented 236 

in the non-dimensional form [105]. Another side the angle of attack and Reynolds number is derived as 237 

{
Cl

Cd
} = [

cos αθ - sin αθ

sin αθ cos αθ
]  {

Cy

Cx

}                                                              ……………………………………..…(15)           238 

Normal force coefficient of airfoil contour respectively and Cx  and  Cy  are the tangential force 239 

coefficient along the chord. 240 

Finally, a model for collective pitch control was produced with a variable-pitch system, and four blades 241 

of the level profile were used. The length of the blade is 1 m, the span of a model is 0.557 m and, as 242 

appeared in Fig.5.b. In this type VAWTs for pitch controlling moving cross-section and self-assertive 243 

sliding interface technique were utilized. [1] 244 

 Palash et al. proposed to the prediction the execution of any size and shape of a darrieus VAWT and 245 

maintaining the end goal to demonstrate its capability, initially, the expectation from the present model 246 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5748440&isnumber=5747667
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7237666&isnumber=7237445
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is checked with arrangement working at the Reynolds number of This VAWT settled pitch control is 247 

Shows in Fig. 6(a). [10] 248 

Incorporation of insecure optimal design and dynamic virtual camber impact are basic for exact 249 

execution expectation. Rejection of shaky impacts in the investigation brings about an under the forecast 250 

of energy coefficient is 36% instead of 10%, when the uneven impacts are adopted. The centrality of 251 

demonstrating temperamental optimal design in execution forecast additionally feature the way that the 252 

dynamic blade pitching VAWTs make utilization the features of unsteady streamlined for the improved 253 

execution contrasted with a settled pitch VAWTs. The avoidance of dynamic virtual camber impact by 254 

yourself outcomes is approximately 22% under forecast. In addition, the dynamic virtual camber impact 255 

is likely to move the azimuthal circulation of energy about the half upstream which in turn steady with 256 

perceptions revealed of this study. Parametric investigations displayed a change in the execution of 257 

increasing solidity of VAWT. The solidity is a function of a no. of blades, turbine proportion, and chord 258 

length. Increasing solidity of the turbine blades and thus enhances execution at all tip speed proportions. 259 

This examination affirms that strength is the fitting non-dimensional parameter to consider the 260 

execution of any scale of the turbine, given that the cleared region is kept up. The present system which 261 

it utilizes a blend of blade element theory (BET) and double multi-stream tube (DMST) is a solidity 262 

device to anticipate the execution of VAWTs with a lift-based mechanism. It can be utilized to 263 

comprehend the material science within this mechanism working that makes it appropriate for 264 

preparatory design, plan and measuring the size of the turbine for better performance.   265 

The variation in pitch angles is accomplished by 4-bar linkage instrument in crank rocker setup in which 266 

ground connection has situated the gathering in the focal center pivot. The turbine with a 4- bladed 267 

variable pitch rotor with the mechanism to change the angle of sinusoidal pitching Fig. 6(b) shows. 268 

[106] 269 

     270 

http://www.sciencedirect.com/science/article/pii/S0960148116304669
https://www.iitk.ac.in/aero/abhishek/files/ARF_2015_VAWT.pdf
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 271 
                                      (a)                                                            (b) 272 

Fig.6. (a) Variable amplitude blade pitching Darrieus VAWT. (b)  four-bar linkage mechanism. [10, 273 

106] 274 

 Zhang et al. broadly realized that the nearby stream parameters following up on the blade shift along 275 

their round way and vary altogether between the upstream and downstream of the rotor parts, with this 276 

respect, to decide the finest feature of the blades to variation of the pitch angle a review was done. In 277 

view of double-multiple stream tube display, a streamlining methodology has been fixed up by 278 

connecting numerical reformation, which processes the stream over the rotor and to an enhanced in the 279 

easiest method of the calculation strategy. In this model of variable pitch VAWT displayed accordingly 280 

with respect to Fig.7 [107]. 281 

So as to examine and prediction under the precarious stream conditions the varieties of blade pitch angle, 282 

this system introduced to improve the streamlined performance of  VAWT individual active variable-283 

pitch control model [107]. 284 

 285 
Fig.7. Individual active variable-pitch Prototype VAWT [107] 286 

http://www.sciencedirect.com/science/article/pii/S0960148116304669
http://www.sciencedirect.com/science/article/pii/S0960148116304669
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6307108&isnumber=6306868
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6307108&isnumber=6306868
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6307108&isnumber=6306868
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A demonstration of each blade of the model which can change the pitch angle effectively under control 287 

of servo motor. The wind wheel pivoting the blade, for now, concurring wind round to the neighborhood 288 

stream field, alongside the azimuthal point, by a servo motor the stance of the blade are varying to 289 

accomplish the best-streamlined approach. With the motivation behind getting the greatest power 290 

production, the pitching edge of the blade is balanced by a servo motor through synchronous belt Fig.7 291 

shows their proper arrangement. 292 

 Kader et al. assessed 5 kW power straight-bladed VAWT input bolsters forward controller at high wind 293 

speeds a pitch control was performed. A novel plan for actuation framework and pitch control has 294 

chosen for the VAWT. In that outline, upper and lower sets of the blades are part of two 295 

indistinguishable portions are furnished with a solitary solo actuation framework shows in fig.8. [108] 296 

 297 
Fig. 8. Displays a 3-Dimensional outline of the design [108]. 298 

In this mechanism consider the case in which the lower set is activated with a pitch point of the same 299 

size and inverse sense while the upper set is driven with a negative pitch angle. Keeping in mind the 300 

end goal to demonstrate the execution of a VAWT and the Double-Multiple Stream Tube (DMST) with 301 

variable obstruction factor is received. The DMST show got from the actuator plate hypothesis and 302 

depends on the protection of the energy standard. It had been utilized effectively to Darrius rotors 303 

anticipate general thrust and torque loads. The primary preferred benefit of DMST display is its 304 

constrained calculation time its principle drawback doesn't contemplate dynamic slowdown impacts. 305 

Augmentation of the different stream tube models shows by the DMST. It separates into upstream and 306 

downstream zones stream of the VAWT. This pitch control framework of novel design permits to 307 

file:///H:/environment.scientific-journal.com/articles/4/1.pdf
file:///H:/environment.scientific-journal.com/articles/4/1.pdf
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perform freely from the blade azimuthal position and to depend on wind speed estimation just. The 308 

wind strike in the downstream zone is thought to be the upstream wind speed. [108] 309 

 Mauri et al. assessed another assembling procedure for the acknowledgment of the blade is proposed of 310 

lift based H-Darrieus VAWT. The blade centralized server is given by the arrangement of support 311 

structures of intermediate carbon-fibre NACA0021-shaped introduced on a carbon-fibre circular bar, 312 

being the blade primary auxiliary part shown in Fig. 9(b). [109, 110], for cover the blade a Clysar 313 

material is used as shown in Fig. 9(a). With a specific end goal to,set,up a right,NACA0021 314 

driving,edge,shape,to,the,blade,expanded polystyrene (EPS),material, was received for, its benefit 315 

position as far as stiffness/mass proportion. Wind burrow tests above the rated wind speed conditions 316 

were done to check the dependability quality of such assembling approach. The Clysar was chosen 317 

mainly for its providing a good linkage of the blade coverage, thermo-retraction property. 318 

By using Brushless DC drives and a 4 poles 200W motor some initial tests of blade control have been 319 

performed. In Fig.9 (b) shows the final design of the wind turbine [111]. 320 

 321 
     (a)                                                        (b) 322 

Fig. 9. (a). The blade covered by Clysar.   (b)  A 3-D overview of the designed turbine [111] 323 

 324 

 Liang et al. examine the mechanical behavior of the blade, and after that, the limited environment of 325 

the blade should be presented, seen in Fig.10. The blade of the model is essential supported is observed. 326 

For wind turbine blade pitch control are introduced a servomotors at the lower struts, prompting about 327 

by the mass of blade to an axis force brought, pitch control component and struts. The impacts of axis 328 

force couldn't be ignored with the axis forces were supposed to be constant, and the expanding of the 329 

length of the blade [112]. 330 

file:///H:/environment.scientific-journal.com/articles/4/1.pdf
http://dx.doi.org/10.1080/15397734.2011.543048
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6993323&isnumber=6941339
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6993323&isnumber=6941339
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7558622&isnumber=7558523
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Both ends of the blade are performed the variable-pitch blades of the SB-VAWT are essentially 331 

supported afterward look into on limit state and at both ends with bearings, which has substantial affects 332 

such as deformation, the mechanical properties of the blade, modes and stress. The of wind turbine 333 

tower vibrations is eliminate in both from top to bottom and backwards-forwards ways has been 334 

examined in different analyses. In,Ref. [113] liang et al. utilized a passive control technique to diminish 335 

tower and blade vibrations by disseminating the energy with a tuned mass damper (TMD). It was 336 

recommended that a tuned moving ball damper be mounted on the highest point of the turbine to 337 

overturn wind prompted vibrations so passive techniques have additionally been considered in different 338 

analyses incorporating [114].  339 

For the angular contact the pointed roller or metal ball bearing was utilized for the blade base to hold 340 

up under the spanwise loads and the base of blade was viewed as a settled limitation because through 341 

servomotor authors control the blade pitch angle. The blade bears its own particular weight, instant, 342 

intermittent streamlined burdens and outward constraint. With the wind shear impact overlooked, the 343 

streamlined burdens and outward compel were disentangled as a consistently disseminated stack, the 344 

accordingly blade was in a state of consolidated distortion of twisting, torsion, and axial force. More 345 

concerns were paid on twisting distortion of the blade,;it is subsequently four-sided the rosette was 346 

utilized to research the crosswise vibration appearances of the blade [112]. 347 

 348 
Fig. 10. Lateral vibration and constraint environment analysis for simplicity supported blade [112] 349 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7558622&isnumber=7558523
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7558622&isnumber=7558523
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 Diaz et al. assessed that the remote mechanical control of the wind bearing yaw and pitch point of ever 350 

blade of VAWT rotor, utilizing an arrangement of incline apparatuses with proportion 1:2, specifical 351 

edge makes one disturbance for every two focal shafts finish upsets. Shown in fig.11 (a) and 11(b) this 352 

model methodology sensibly the streamlined conduct of high solidity rotors if tip speed ratio (TSR) < 353 

1, also, in that condition it can be dismissed the speed losses downwind the rotor [115].  354 

The most vital preferred viewpoint of this sort of turbine have high starting torque so that without need 355 

of high wind speeds to let the turbine rotate. In the other hand, the productivity is lower than basic wind 356 

turbines. 357 

 358 

 359 
 360 

(a)                                                                (b) 361 
Fig. 11: (a) VAWT prototype (b) Vertical axis wind turbine Conceptual design [115] 362 

 363 

 Bhatta et al. proposed the wind turbine blade are furnished with folds that can be freely managed 364 

for moving camber. Utilizing pitch controls and camber help to make a more prominent constraint 365 

variance over the turbine than utilizing the pitch control mechanism alone. So this will permit VAWT 366 

action over an extensive variety of wind speed, enhance resistance to varying wind and allow the turbine 367 

to self-begin. [116] 368 

 369 

 370 

  371 

http://www.abcm.org.br/upload/files/PI_III_10.pdf
http://www.abcm.org.br/upload/files/PI_III_10.pdf
http://www.academia.edu/download/46041258/1828_Individual_Blade_Pitch_and_Camber_Control_for_Vertical_Axis_Wind_Turbines.pdf
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 372 

 373 

Table 2 
Summary of a vertical axis wind turbine with pitch control configurations: 

S.No. Wind turbine 

types 

Figure Features of pitch control 

system 

Merits Demerits 

1. Three-

dimensional 

VAWT [9] 

Fig.3, 

4  

>The sliding mesh technique > Simple in construction 

> Good efficiency 

> Tested and 

designed only for low 

power applications 

2. Straight-bladed 

VAWT [104] 

Fig.5 > One servo motor 

>Four belt wheels 

>Synchronous belt and an  

anemoscope 

>Improving the self-starting 

capacity of SB-VAWT 

> Complicated design 

3. Darrieus VAWT 

[106] 

Fig.6 > Classical four-bar linkage 

mechanism 

>Maximum power extraction 

for a wide range of tip speed 

ratios. 

> Tested and 

designed only for low 

power applications 

4. Prototype 

VAWT [107] 

Fig.7 > Individual active 

servomotor 

> Synchronous belt 

> Self-starting capability 

> The maximum power 

output at any azimuth angle 

> Designed and 

tested only for low 

power applications 

5. Straight bladed 

VAWT (Double-

multiple Stream 

Tube) into 

upstream and 

downstream 

zones [108] 

Fig.8 > Novel design for pitch 

control 

> Solitary single actuation 

framework 

> Actuator disc theory 

>To perform freely from the 

blade azimuthal position 

> It doesn't take 

dynamic stall effects 

into consideration. 

6. Lift based H-

Darrieus VAWT 

[111] 

Fig.9 > Classical fixed-pitch 

concept 

>Designed for medium-high 

tip speed ratios. 

> Complicated shape 

7. Straight-bladed 

H type  VAWT 

[112] 

Fig.10  >Blade vibration monitoring 

method based  

>Servo motor for individual 

blades 

> Simply supported at both 

ends with bearings in each 

blade. 

> Power coefficient is much 

larger than respect to the case 

of 1/4 chord length. 

> The maximum power 

coefficient increased from 

43% to 49%. 

> Complex 

construction 

> High cost 

8. Low TSR 

vertical axis wind 

turbine [115] 

Fig.11 > Two Arduino boards 

> Used a permanent magnet 

stepper motor as actuator 

> A two-axis Hall effect 

sensor 

> Application for low heights 

VAWTs 

> Increasing the pitch angle 

tolerance 

> Complex 

construction 

 

 

9. Camber Control 

for VAWT [116] 

Fig.12  > Camber controls 

> Using a trailing edge flap 

on each blade 

> Creating a greater force 

> Allows individual pitching 

> Tested and 

designed only for low 

power applications 

10. CAWT [117] Fig. 13 > Design of the novel turbine 

> Six untwisted horizontal 

blades 

> In the unpredictable nature 

of the wind turbine 

performance is better 

> Through both horizontal 

and vertical mechanisms It 

can extract wind energy. 

> Complicated shape 

11 fixed-pitch 

SBVAWTs [119] 

Fig.14 > The blade and the 

supporting arm used 

bearings and clips. 

> The connecting rod and the 

blade also used clips and 

bearings. 

> High-solidity SBVAWT > Because of it is a 

complicated issue so 

not consider the 

turbulence flow. 

12 A novel blade 

pitch control 

[120] 

Fig.15 > According to the optimal 

pitch function a control disc 

with a rail and three 

connecting rods controlled 

the pitch angles of three 

blades that are designed. 

> Optimal blade pitch 

function for a high-solidity 

SBVAWT 

> Smooth uniform movement 

> It is a complicated 

issue 

> Did not consider the 

turbulence flow. 

 

 

 

 

 

 

 

In table no. 2 summary of a vertical axis wind turbine with pitch control configurations has been presented. 



Unedite
d ve

rsi
on publish

ed onlin
e on 27/8/2020

21 

 

In fig. 12 schematic top view of the VAWT blade setup has been shown. At least two blades, three, on 374 

account of the demonstrated outline, are fixed on a vertical bolster configuration. Then each has a turn 375 

that permits singular pitching, revolution about their rotate hub, and a trailing edge fold use for camber 376 

control. The trailing edge and pitch fold of every turbine blade has been autonomously controlled by 377 

utilizing local actuators. 378 

 379 
 380 

Fig. 12. Individual Blade Controlled VAWT Schematic design [116] 381 

 382 

 W.T. Chong et al. proposed a novel cross axis wind turbine has been intellectualized to boost wind 383 

power production. This is accomplished by means of outfitting the wind energy from both the horizontal 384 

and vertical segments of the approaching wind. The cross axis wind turbine includes three vertical 385 

blades and six horizontal blade organized in a cross axis direction. Starting testing utilizing diverters to 386 

control the approaching wind speed upward shows in fig.13 (a) that the cross axis wind turbine created 387 

critical enhancements in power production and rotating speed execution contrasted with a systematic 388 

straight-bladed vertical axis wind turbine. Specifically, it was discovered such the cross axis wind 389 

turbine incorporated with a 450 redirector delivered a power coefficient of 2.8 occasions larger with 390 

respect to the vertical axis wind turbine. Outcome is that the rotor rotating speed was expanded by 70% 391 

with more upgraded beginning manner. The CAWT can possibly succeed for urban wind power 392 

mechanism the traditional vertical axis wind turbine used because of its capacity to concentrate wind 393 

energy regardless of the wind direction, in this manner upgrading the power execution produce [117]. 394 

http://www.academia.edu/download/46041258/1828_Individual_Blade_Pitch_and_Camber_Control_for_Vertical_Axis_Wind_Turbines.pdf
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 395 
                                                             (a)                                                                (b) 396 

Fig. 13. (a) The general arrangement of the cross axis wind turbine illustration is showing. (b) CAWT 397 

prototype [117] 398 

In this CAWT the horizontal blades behave as the connecting struts, connecting at the center of the 399 

vertical turbine blades through the connectors are shown in fig.13 (b) the top and bottom hubs, is linked 400 

to a shaft by a comparative height of,10 cm In complete, six connectors linkage the vertical and 401 

horizontal blades together [117]. The connecting rods for the CAWT are airfoil-shaped and these 402 

horizontal blades are pitched at different angles to observe CAWT performance by the pitch angle effect. 403 

Similarly, the top side horizontal blades of the CAWT is at an offset angle of,600 comparatives with the 404 

bottom side struts to achieve a further constant power delivery for decreasing the vibration. 405 

 Variable pitch VAWT mechanism diagrams are shown in Fig. 14 suggested by Sagharichi et,al. [118]. 406 

In this scheme, the pitch angle is to be governed by on eccentricity between the cam and the rotation 407 

axis. 408 

 409 
Fig. 14. A proposed variable pitch mechanism schematic [119] 410 
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The current scheme inspects the impact of solidity on fixed and variable pitching mechanism of blade 411 

of a VAWT. Designed to execute this operation, a VAWT with two, three and four straight blades at 412 

five different solidities within the limits of 0.2-0.8 was inspected [119]. 413 

 Authors realized that the pitch control device generally comprises a control disc with a considered rail 414 

and three connecting rods according to the concentrate shown in figs. 15(a) and 15(b). The rail is 415 

considered agreeing to the optimum pitch task those are given, hence that the control compact disk with 416 

in the considered rail allows to the optimum pitch angles has been recognized for every azimuth angle. 417 

This should be pointed out that from the shapes that at the one end of the supporting rod was connected 418 

on the projection other than opposite side through the bearing and clip the blade was connected. 419 

 420 

 421 
                                         (a)                                                                        (b)  422 

Fig. 15. (a) VAWT model installed in the wind tunnel (b) the pitch control system Sketch [120]. 423 

At the end of one the interfacing pole was as well associated with the blade by bearings, clasps and the 424 

opposite end could slide inside the hole of the projection and was limited by the considered rail. Through 425 

bearings the associating poles were additionally associated with the supportive arms so they could push 426 

ahead and in reverse with the mainframe of the supportive arms [120]. 427 

4. Conclusion, 428 

Vertical axis wind turbine offers economic situation of reasonable energy solution for a remote those area 429 

are far away from the incorporated grid lines as well as an urban area for an individual household. Keeping 430 

in mind the end goal to spread the utilization of VAWT, the issues connected with different arrangements 431 

are poor self-starting, low starting torque and low coefficient of power have been considered. A lot of many 432 



Unedite
d ve

rsi
on publish

ed onlin
e on 27/8/2020

24 

 

papers in this research area have been reviewed, compared and summarized. Moreover, following 433 

conclusions have been drawn from the present survey: 434 

 Variable pitch control technology has made a great development for the self-starting of VAWT. 435 

 VAWT a variable pitch control scheme is more effective than the one with fixed pitch control. 436 

 This paper will work as a guideline to provide useful knowledge and recent VAWT power 437 

augmentation technology for researchers in their future studies. From the review, flow augmentation 438 

techniques are elaborated on and discussed based on recent research. 439 

 To have automatic pitch control depending on wind speed, servomotor based systems are one of the 440 

best options available.  441 

 The variable-pitch control strategy has been, analysed to achieve better performances. The pitch 442 

control mechanism is feasible, effective and can very well improve the power coefficient and starting 443 

torque through offset pitch angle.   444 
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 712 

Nomenclature 713 

HAWT Horizontal Axis Wind Turbines 

VAWT Vertical axis wind turbines 

CFD Computational fluid dynamics 

DMS Double multiple stream 

AoA Angle of Attack  

IMC Internal model controller  

IPC Individual pitch controller  

MPC Model predictive control  

PI Plus integral 

CPC Collective pitch control  

ECMPC Explicit continuous-time model predictive control 

TSR Tip Speed Ratio 

BET Blade Element Theory 

DMST Double multi-streamtube 

EPS Expanded polystyrene 

SB-VAWT Straight bladed vertical axis wind turbine 

TMD Tuned mass damper 

CAWT Cross axis wind turbine 

GW Gigawatt 

MW Megawatt 

CP Coefficient of Power 

μo The operational point of the pitch first component 

μipc The operational point of the pitch second component IPC action 

μcpc The collective pitch control action 

Up The total pitch angle control action 

umin Minimum values of the pitch angle 

umax Maximum values of the pitch angle 

αmin Minimum pitch angle rates of variation 

αmax Maximum pitch angle rates of variation 

𝜆 TSR 

𝜔𝑟 The rotor angular velocity 

R The rotor radius 

μ∞ Wind speed 

W⃗⃗⃗  The resultant velocity vector 

U The induced velocity 

V Blade velocity 
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V⃗⃗  The tangential velocity vector 

α Angle of attack 

φ Representing the angle between the vector direction of V⃗⃗  and W⃗⃗ ⃗⃗  . 
θ The azimuth angle 

W The relative wind speed 

𝛽 𝑜𝑟 𝛼𝑝 or 𝑉𝜃 The blade pitch angle 

𝑙𝑐 Blade link 

𝛼𝑐  blade offset pitch angle 

𝛼𝑤 the blade pitch angle amplitude 

𝑙𝑒 The eccentric link 

𝑙𝑚  the main link 

𝑙𝑠 Second-link 

∅ the blade azimuth angle 

𝜃𝑝  The angle between the wind direction and the eccentric-link 

d Turbine diameter,  

h Blade Span 

𝛼𝜃 The instantaneous angle of attack 

𝑊𝜃 The Relative velocity 

𝛾𝜃 the angle of incidence 

 𝛽𝜃 local inflow speed 

𝑀𝜃 the instantaneous driving torque 

Cl lift coefficient 

Cd drag coefficient 

Cx and Cy Tangential force coefficient along the chord. 

H The flow mean depth 

C Chord length 
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  759 

Table 1 The VAWT comparison with HAWT. [94] 

 (VAWT) (HAWT) 

Ideal efficiency More than 70% 50–60% 

Noise production Quite Less Relatively high 

Self-starting capacity No Yes 

Whole construction Easy Difficult 

Blade’s action space Small Large 

Obstacle for birds Fewer More 

Ground height Lesser Big 

location of generator Ground level Top site 

Direction of wind Multisite Single site 

Yaw control mechanism No Yes 

Tower sway Small Large 
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 760 
 761 

 762 

Table 2 
Summary of a vertical axis wind turbine with pitch control configurations: 

S.No. Wind turbine 

types 

Figure Features of pitch control 

system 

Merits Demerits 

1. Three-

dimensional 

VAWT [9] 

Fig.3, 

4  

>The sliding mesh 

technique 

> Simple in construction 

> Good efficiency 

> Tested and 

designed only for low 

power applications 

2. Straight-bladed 

VAWT [104] 

Fig.5 > One servo motor 

>Four belt wheels 

>Synchronous belt and an  

anemoscope 

>Improving the self-starting 

capacity of SB-VAWT 

> Complicated design 

3. Darrieus VAWT 

[106] 

Fig.6 > Classical four-bar linkage 

mechanism 

>Maximum power extraction 

for a wide range of tip speed 

ratios. 

> Tested and 

designed only for low 

power applications 

4. Prototype 

VAWT [107] 

Fig.7 > Individual active 

servomotor 

> Synchronous belt 

> Self-starting capability 

> The maximum power 

output at any azimuth angle 

> Designed and 

tested only for low 

power applications 

5. SB-VAWT 

(Double-multiple 

Stream Tube) 

into upstream 

and downstream 

zones [108] 

Fig.8 > Novel design for pitch 

control 

> Solitary single actuation 

framework 

> Actuator disc theory 

>To perform freely from the 

blade azimuthal position 

> It doesn't take 

dynamic stall effects 

into consideration. 

6. Lift based H-

Darrieus VAWT 

[111] 

Fig.9 > Classical fixed-pitch 

concept 

>Designed for medium-high 

tip speed ratios. 

> Complicated shape 

7. Straight-bladed 

H type  VAWT 

[112] 

Fig.10  >Blade vibration monitoring 

method based  

>Servo motor for individual 

blades 

> Simply supported at both 

ends with bearings in each 

blade. 

> Power coefficient is much 

larger than respect to the case 

of 1/4 chord length. 

> The maximum power 

coefficient increased from 

43% to 49%. 

> Complex 

construction 

> High cost 

8. Low TSR 

vertical axis wind 

turbine [115] 

Fig.11 > Two Arduino boards 

> Used a permanent magnet 

stepper motor as actuator 

> A two-axis Hall effect 

sensor 

> Application for low heights 

VAWTs 

> Increasing the pitch angle 

tolerance 

> Complex 

construction 

 

 

9. Camber Control 

for VAWT [116] 

Fig.12  > Camber controls 

> Using a trailing edge flap 

on each blade 

> Creating a greater force 

> Allows individual pitching 

> Tested and 

designed only for low 

power applications 

10. CAWT [117] Fig. 13 > Design of the novel 

turbine 

> Six untwisted horizontal 

blades 

> In the unpredictable nature 

of the wind turbine perform-
ance is better 

> Through both horizontal 

and vertical mechanisms It 

can extract wind energy. 

> Complicated shape 

11 fixed-pitch 

SBVAWTs [119] 

Fig.14 > The blade and the 

supporting arm used 

bearings and clips. 

> The connecting rod and 

the blade also used clips and 

bearings. 

> High-solidity SBVAWT > Because of it is a 

complicated issue so 

not consider the 

turbulence flow. 

12 A novel blade 

pitch control 

[120] 

Fig.15 > According to the optimal 

pitch function a control disc 

with a rail and three 

connecting rods controlled 

the pitch angles of three 

blades that are designed. 

> Optimal blade pitch 

function for a high-solidity 

SBVAWT 

> Smooth uniform movement 

> It is a complicated 

issue 

> Did not consider 

the turbulence flow. 
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 769 

 770 

Fig. 1. Global wind industry with 51.3 GW of new wind energy installed in the year 2018 [6]. 771 
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Fig.2 Velocities and Forces action on the blade [101] 791 
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           (a)                                                                                         (b) 811 

 812 

Fig.3: An overview of the wind turbine modeled (a) Front view (b) Top view of the rotor [9] 813 
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 837 

Fig. 4: Schematic sketch of the variable pitch angle system [9] 838 
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 860 
                              (a)                                                                                (b) 861 

Fig. 5. (a) Schematic concept sketch (b) Prototype of SB-VAWT with collective pitch control 862 

experimental setup [104] 863 
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                  (a)                                                                      (b) 893 

Fig.6. (a) Variable amplitude blade pitching Darrieus VAWT. (b)  four-bar linkage mechanism. [10, 894 

106] 895 
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Fig.7. Individual active variable-pitch Prototype VAWT [107] 924 
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 939 
Fig. 8. Displays a 3-Dimensional outline of the design [108]. 940 

 941 

 942 

 943 

 944 

 945 

 946 

 947 

 948 

 949 

 950 

 951 

 952 

 953 

 954 

 955 

 956 

 957 

 958 

 959 

 960 

 961 

 962 

 963 

 964 

 965 

 966 

 967 

 968 

 969 



Unedite
d ve

rsi
on publish

ed onlin
e on 27/8/2020

47 

 

 970 
   (a)                                                        (b) 971 

Fig. 9. (a). The blade covered by Clysar.   (b)  A 3-D overview of the designed turbine [111] 972 
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 999 

Fig. 10. Lateral vibration and constraint environment analysis for simplicity supported blade [112] 1000 
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(a)                                                                (b) 1019 
Fig. 11: (a) VAWT prototype (b) Vertical axis wind turbine Conceptual design [115] 1020 
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Fig. 12. Individual Blade Controlled VAWT Schematic design [116] 1050 
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(a)                                                                (b) 1075 

Fig. 13. (a) The general arrangement of the cross axis wind turbine illustration is showing. (b) CAWT 1076 

prototype [117] 1077 
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Fig. 14. A proposed variable pitch mechanism schematic [119] 1106 
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1139 

(a)                                           (b)1140 

Fig. 15. (a) VAWT model installed in the wind tunnel (b) the pitch control system Sketch [120].1141 

1142 

1143 




