Quantification of gas hydrate and free gas in the Andaman offshore from downhole data

Maheswar Ojha* and Kalachand Sain

CSIR-National Geophysical Research Institute, Uppal Road, Hyderabad 500 007, India

Under Expedition-01 of Indian National Gas Hydrate Programme (NGHP Exp-01), drilling/coring was done in 2006 at one site in the Andaman Sea, where the base of gas hydrate stability, coinciding with the bottom simulating reflector (BSR) on seismic section, was observed at 610 m below sea floor (mbsf) with water depth of 1344 m. We estimate the saturation of gas hydrate and free gas by applying rock physics theories to downhole sonic velocity, and compare the results with the resistivity and chlorinity data. The result matches well with the pressure core data. Although the average saturation of gas hydrate is only 5% of pore volume (or 3% of sediment volume), the total amount of gas in the form of gas hydrate is about 1570.8 cubic metre within the sedimentary column of 308 m above the BSR. The average concentration of free gas is estimated as ~1.4% of the pore volume within the sedimentary columns of 80 m below the BSR.

Keywords: National Gas Hydrate Programme, quantification, rock physics.

One of the world’s deepest and thickest gas hydrate-bearing zone was identified on the seismic data1. Drilling and coring were carried out at one site in the Andaman Sea during Expedition 01 of the Indian National Gas Hydrate Programme (NGHP Exp-01) for validating the ground truth of gas hydrate as inferred from seismic data (Figure 1). The Site NGHP-01-17 is located at 10°45.1912′N, 93°6.7365′E in the Andaman Sea, where coring along with wire line sonic, gamma ray, density and resistivity logging were carried out through sediments up to 691.6 m below the sea floor (mbsf) with water depth of ~1344 m (ref. 1). Very low geothermal gradient (19 ± 2°C per km) and high rate of sedimentation (~5.6 cm/kyr) led to thick gas hydrate zone in this area. The infrared (IR) thermal and porewater Cl– anomalies at site 17 indicate gas hydrate within the ash-rich sediments between 250 to 608 mbsf where the bottom stimulating reflector (BSR) anomalies are also due to Dr R. Rangarajan, Chief Scientist, NGRI and his colleagues for discussions and necessary help during field work.

Acknowledgements. The Third World Academy of Science (TWAS), Italy in collaboration with the Council of Scientific and Industrial Research (CSIR), India acknowledged for providing Fellowship to first author for this study at the National Geophysical Research Institute (NGRI), Hyderabad, India. The second author thanks CSIR for Emeritus fellowship. Thanks are also due to Dr R. Rangarajan, Chief Scientist, NGRI and his colleagues for discussions and necessary help during field work.

Received 20 September 2012; revised accepted 13 June 2013

*For correspondence. (e-mail: maheswar_ojha@yahoo.com)
Figure 1. a. Location of the Site NGHP-01-17 in the Andaman Sea. b. Seismic profile is shown by the thick solid line crossing the site NGHP-01-17 (black dot); c. Part of the seismic section showing the BSR at a depth of ~600 m below seafloor with opposite polarity with respect to the seafloor and cutting across the dipping strata (modified after Collett et al.).

have also used the resistivity and chlorinity data for the quantification of gas hydrate, and compared the results with the pressure core measurements.

The Andaman Sea is an active backarc basin, located on the eastern edge of the Bay of Bengal (Figure 1 a). On the other hand, the Andaman Islands are volcanic island arc system located on the western edge of the Andaman Sea. The backarc system, comprising Indian, Burma and Sunda plate boundaries, were formed about 3 Ma ago, and the plates are being currently separated at a rate of 3.76 cm/year (ref. 3). The site NGHP-01-17 is situated between the Andaman Islands and the backarc spreading centre. Lithology of the Andaman Sea is dominated by terrigenous muddy clay (70–100%) from the Irrawaddy River, nannofossil carbonate ooze and minor amount of volcanic ashes, iron sulphide-rich zones and organic-rich intervals. The 691.6 m sediment sequence of site 17 is predominated by nanno-fossil ooze with 382 m thin layers and patches of white, grey and black ash, white pumice fragments, and dispersed black ash and rare scoria of lapilli size. The base of gas hydrate stability zone is predicted at 620 mbsf based on measured seafloor temperature of 5.6 ± 0.2°C and geothermal gradient of 19 ± 2°C per km assuming pure methane and pore water salinity of 35 ppt (refs 1 and 5).

Seismic velocity of pure solid gas hydrate is about 3.7 km/s, which is much higher than the background velocity (1.6–1.7 km/s) of shallow marine sediments. Therefore, presence of gas hydrate within the sediments increases seismic velocity. This increase in seismic velocity can be translated into the amount of gas hydrate using some rock physics modelling. Here, we have used the three-phase Biot-type equation (TPBE), which is very simple to apply and gives better results than other theories in the case of isotropic distribution of gas hydrate in marine sediments. The drilling, coring and wire line logging results show uniform sequence of 691.6 m thick sediment in which gas hydrate is distributed as pore fluid. Therefore, assuming isotropic medium, the amount of gas hydrate can be estimated using the P-wave ($V_p)$ and S-wave (V_s) velocities as

$$V_p = \sqrt{(K + 4\mu/3)/\rho_b} \quad \text{and} \quad V_S = \sqrt{\mu/\rho_b},$$

where ρ_b is the bulk density of hydrate-bearing sediment.
The bulk (K) and shear (μ) moduli are determined as

$$K = K_m (1 - \beta_1) + \beta_1^2 K_{av}$$

$$\mu = \mu_m (1 - \beta_2)$$

$$\frac{1}{K_{av}} = \frac{\beta_1 - \phi}{K_m} + \frac{\phi_w + \phi_h}{K_w + K_h}$$

$$\beta_1 = \frac{\phi_w (1 + \alpha_1)}{1 + \alpha_2}, \quad \beta_2 = \frac{\phi_w (1 + \alpha_2)}{1 + \alpha_3}, \quad \gamma = \frac{(1 + 2\alpha)}{(1 + \alpha)}.$$

α is the consolidation parameter, m, w and h refer to sediment grain, water and hydrate respectively.

The apparent porosity, $\phi = \phi_w + \phi_h$: water-filled porosity, $\phi_w = (1 - S_w)\phi$; the hydrate-filled porosity, $\phi_h = S_h\phi$, where S_h is the hydrate saturation.

Here $\alpha = 0.12$, which accounts for the reduced impact of hydrate formation relative to compaction in terms of stiffening the host sediments’ framework. Here, $\alpha = 13.3(700/d)^{1/3}, d$ is the depth below seafloor.

For comparison, we have estimated the saturation of gas hydrate using the Gassmann’s formula, which is widely used for oil/hydrocarbon exploration. Gassmann’s rock physics theory has been described in detail in previous works.

Here, we have used the porosity (ϕ, Figure 2a) derived from downhole density (ρ_h) measurements using the standard density–porosity relation: $\phi = (\rho_s - \rho_h)/(\rho_s - \rho_w)$, where ρ_s (water density) and ρ_h (grain/matrix density) are taken as 1.03 and 2.66 g/cc respectively. The clay fraction (Figure 2b) has been calculated from downhole gamma ray log by considering the minimum and maximum gamma ray values as 10 and 120 respectively. Figure 2c and d display the resistivity and salinity variation as a function of depth. The P-wave velocity (Figure 2e) used here is the wire line sonic. Several peaks observed in downhole data are due to very thin (less than 2 cm) consolidated carbonate ooze. Other parameters used for the theoretical calculation are given in Table 1. Both the rock physics models have been calibrated with the velocity of water saturated sediment at a depth of 413.7 mbsf, where gas hydrates were not found in the pressure core. There are four pressure core measurements for gas hydrate and one for free gas. The pressure cores, collected in situ conditions followed by laboratory measurements, gives about 98% correct estimation.

Although Biot type and Gassmann’s equation equally predict the velocity (Figure 2e) of water-saturated sediment, the Gassmann’s equation predicts higher hydrate saturation (Figure 2f) than that of the Biot type theory. This is probably because the Gassmann theory does not take into account stiffening of sediments due to presence of solid gas hydrate.

Pure gas hydrate is non-conductive and therefore increases the resistivity of sediments with increasing saturation of gas hydrate. The increase in resistivity against the background is converted into the amount of gas hydrate using the Archie’s equation as $S_h = (1 - S_w)$, where S_w is the water saturation in pore space and is expressed as $S_w = (R_h/R_i)^{1/3}$. $R_0 = aR_w/\phi^2$ is the resistivity of water saturated sediment, and R_w is the pore fluid resistivity as estimated from Fofonoff by a linear fit to the in situ temperature profile using the measured seafloor temperature (5.5°C) and geothermal gradient of 20°C/km (ref. 1), and the water salinity, measured on interstitial water samples in this hole; ϕ is the sediment porosity, and R_i is the formation resistivity; $a = 2, m = 2.5$ and $n = 2$ (ref. 24) are called the Archie coefficient, cementation-exponent and saturation-exponent respectively. The saturation gas hydrate has been estimated using the spherically focused resistivity log (SFUL; Figure 2c), which has the highest resolution but less depth of penetration. The saturation of gas hydrate with depth is shown by black solid line in Figure 2f.

When sediment samples containing gas hydrate are brought to normal temperature and pressure conditions, gas hydrate dissociates and generates fresh water. Therefore, pore waters in the samples after dissociation of gas hydrate will be fresher than the in situ water and the decrease in salinity can be used to quantify the amount of gas hydrate. By assuming constant pore volume during the dissociation of gas hydrate, the saturation of gas hydrate, S_h can be measured from mass balance as

$$S_h = (C_{ch} - C_i)/C_{ch},$$

where C_{ch} is the in situ ‘baseline’ pore water chlorinity and C_i is the chlorinity (salinity) measured (Figure 2d) in the core sample after gas hydrate dissociation. Gas hydrate saturation estimated from chlorinity anomaly is shown by grey line in Figure 2f.

From Figure 2f, we conclude that the amount of gas hydrate estimated from the Biot-type equation best matches with the pressure core results (yellow dots) at this site NGHP-01-17. The average saturation of gas hydrate is estimated as 3% of sediment volume (5% of

| Table 1. Various parameters used for theoretical calculation |
|---------------------------------|----------------|
| Parameters | Values with units |
| Bulk modulus of quartz | 36 GPa |
| Shear modulus of quartz | 45 GPa |
| Bulk modulus of clay | 20.9 GPa |
| Shear modulus of clay | 6.85 GPa |
| Bulk modulus of pure gas-hydrates | 6.41 GPa |
| Shear modulus of pure gas-hydrates | 2.54 GPa |
| Bulk modulus of water | 2.25 GPa |
| Density of quartz | 2.70 g/cc |
| Density of clay | 2.60 g/cc |
| Density of pure gas-hydrates | 0.92 g/cc |
| Density of seawater | 1.03 g/cc |
| Critical porosity | 0.62 |
| Number of grain contacts | 9 |
pore volume) within 308 m sedimentary column, the total amount of gas below one unit surface area is estimated as 1570.8 cubic metre (0.03 × 308 × 170) by assuming 170 volume of gas dissociated from one volume of gas hydrate at normal pressure and temperature.

Presence of solid gas hydrate in pore spaces makes sediment impervious and acts as a trap for upcoming free gas. The seismic velocity of gas is very low and hence its presence decreases the P-wave velocity of the sediment drastically. We have estimated the saturation of free gas using the Gassmann’s equation5 by assuming uniform distribution of gas in the sediment pores. The theory has been described in detail in earlier studies19,20. As elastic properties of gas depend greatly on the pressure and temperature of the surrounding medium, we have corrected the density and bulk modulus of gas according to the relation:

\begin{align*}
\rho &= \rho_0 \exp\left(-\frac{Q}{RT}\right), \\
K &= K_0 \exp\left(-\frac{Q}{RT}\right),
\end{align*}

where ρ and K are the density and bulk modulus of gas, respectively, ρ_0 and K_0 are the initial values at normal pressure and temperature, Q is the activation energy, R is the gas constant, and T is the temperature.

Figure 2.

- **a.** Porosity calculated from wire line density; **b.** Clay fraction using wire line gamma ray log; **c.** SFLU resistivity; **d.** Salinity of extracted water samples after dissociation of gas hydrate; **e.** Observed wire line P-wave velocity (black line) along velocity of water saturated sediments (background velocity) using the TPBE (red line) and the Gassmann’s (dotted green) equation; and **f.** Hydrate saturation estimated using SFLU resistivity (black line), TPBE equation (red line), Gassmann’s equation (green), pressure cores (yellow dots) and free gas saturation using Gassmann’s equation (blue line).
tionship given by Batzle and Wang. The density and bulk modulus of gas have been calculated as 0.262 g/cc and 0.114 GPa for pressure of 26.5 MPa and temperature of 20°C at BSR depth. The amount of free gas estimated here is shown by blue line in Figure 2.f.

We have incorporated the rock physics modelling to estimate the saturation of gas hydrate and free gas using the logging data in the Andaman Sea. The saturations estimated from various downhole logging and coring data demonstrate that the result based on rock physics modelling matches best with the pressure core measurements. Although the average saturation (5%) of gas hydrate is low, the total amount of gas as hydrate is very high due to large thickness (308 m) of hydrate-bearing sedimentary column.

2. Curray, J. R., Possible greenschist metamorphism at the base of a 22-km sedimentary section, Bay of Bengal, Geology, 1991, 19, 1097–1100.

ACKNOWLEDGEMENTS. We thank the Director, CSIR-NGRI for his permission to publish this work. The Directorate General Hydrocarbons and the Ministry of Earth Sciences are gratefully acknowledged for providing the data and financial support. We also thank the participants of the Indian NGHP Exp-01. This is a contribution to GENIAS Project of NGRI under the 12th Five Year Plan of CSIR.