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On acoustic theory of conch shell
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We recently reported a study on the generation and
resonance of sound in a shell assuming the straight-
ened conch-cavity as a truncated horn. However, the
tomographic picture reveals that the cavity grows as
an Archimedes spiral carried forward in length. To
account for the realistic case, in this study, the equa-
tion of propagation of sound waves in the shell is set
up as Webster’s horn equation in three dimensions in
circular cylindrical coordinates. Solution of the angu-
lar and radial components of the equation on applica-
tion of appropriate boundary conditions leads to an
expression for frequency which is the same as the
one reported earlier. However, solution of the z-
component of the wave equation subjected to available
boundary conditions poses the possibility of existence
of very high frequency components, almost in the
ultrasonic range. The intensity of radiation saturates
in the high frequency range.

Keywords: Archimedes spiral, conch shell, ultrasonic
component, Webster’s horn equation.

THE conch shell is one of the earliest wind instruments
found in nature. In view of its wide use as a musical
instrument and trumpet by various cultures the world
over through the ages and in view of the fact that little
study has gone into its acoustics, we have taken up a
close study of the system. In this process we reported the
result of our study on morphology and tomographic pic-
tures of the shell samples to show that the structure of the
shell follows the Fibonacci pattern’.

Further in a recent report we have presented our under-
standing of the mechanism of generation of musical
sound in the conch shell®>. We have presented the sound
spectra graphs from a number of shell samples produced
on a computer using Spectra Plus software. The spectral
characteristics have been observed and outlined. It has
been pointed out that the shell sounds in ‘lock-in” mode
accompanied by frequencies of all integral multiples of
the peak (i.e. lock-in) frequency.

In order to correlate the resonance frequency with the
shell parameters, we have assumed the straightened shell
cavity spiral to approximate a truncated horn. A well-
known theory of conical horn has been applied, which
leads to a frequency expression that agrees fairly well
with the observed spectra.

However, as seen in the tomographic pictures, the
conch cavity grows as an Archimedes’ spiral carried
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length-wise. Hence the truncated horn approximation is
not a realistic description though it works well. Therefore
in this study, a more realistic theory of propagation of
sound in the shell has been developed by setting up the
Webster’s horn equation in three dimensions in circular
cylindrical coordinates. Appropriate expression for the
cavity cross-section was fed to the equation and the vari-
ables were separated. Solution of the angular and radial
components of the equation, on application of appropriate
boundary conditions with reasoning resulted in an expres-
sion for the resonance frequency which was the same as
the one reported by our recent work®.

It is interesting to note that the solution of z-component
of the wave equation subject to the available boundary
conditions offers the possibility of existence of frequency
components in the 2 kHz range and their harmonics. This
implies the conch sound possibly contains ultrasonic
components. Further, the radiation pattern seems to satu-
rate in the high frequency range. These results need to be
tested in future experiments.

Webster’s horn equation in one dimension is given
by>?

2

¢2028_¢+028_¢‘8(1nS)’ (D
0x? dox  Ox

where ¢ is the velocity potential and S the area of cross-

section of the path of sound propagation. We may gener-

alize the equation as

¢ =c"Vip+A(Vg)-V(nS), 2)

for the description of the conch where the cavity is
wound around the collumella as a spiral both in the &and
z directions (Figure 1). Hence the circular cylindrical

Figure 1.

Schematic view of 3D growth of a conch spiral.
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coordinates are the natural choice. Here the coordinates
are (p, 6, z). The measurement of parameters establishes
the spiral to be Archimedes type with defining equation,
p=K8and the z-spiral growing as &= kz, where K and k
are numerical parameters distinguishing the individual
spirals. However, during the formalism these geometrical
parameters drop out and the final conch equation appears
independent of them.

In the p@ plane, the equations of two spirals bounding
the inner and outer surfaces of the cavity are o, = K, 6,
> = K,6, each value of K specifying a particular spiral.
Let the central spiral be given by p= k6, and the outer
and the inner spirals by p, = (k- A)8 and p, = (xk+ A)0
respectively. So the diameter of cross-section in the p&
plane is d = (x + A)0— (k- A)0= 246 and radius square =
A26% Similarly, in the z-direction, shift dz=4"z and
hence the inclined cross-section has a radius 7=
(A6)?* + (K'z)*. This leads to the expression for the cross-
sectional area, assumed nearly circular as,

S=X16*+kKz, (3)
where A’ and &k’ are constants. Therefore,
InS=In(A8*+Kz. (4)

Let us consider Webster’s horn equation in cylindrical
coordinates. _ B

Assuming #p, 6,z, )= §p, 0, 2)'”, ¢=-w’§p, 6,
z, t). With this substitution, eq. (2) turns out to be,

2
W
“. (5)

c

V2g+(Vg) - V(nS) = —

Using standard expressions for V* and grad in circular
cylindrical coordinates, eq. (5) turns out to be

_a)_z = li ,Oi +Li+i ¢
¢ pop\’ dp) p*o6* 0z’
+ ,E)a—¢+éa—¢+l€a—¢ . ,E)i+ éiwéi
dp 00 0z
x{In(A0% + kz*)}. (6)
It may be noticed that In S is independent of p and hence
the p derivatives in the second term on RHS of eq. (6) do
not contribute.

Upon effecting differentiation and dot product in the
second term on RHS of eq. (6) we obtain,

_a)_2¢— li[pi]q_iiq_i ¢
¢ pop\  op) p*o6* oz

+L[a_¢] 240 +[a_¢] %
02\ 00)(A0% +kz*) \ 0z ) (AO* +kz*)
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Now we proceed to further simplify the last two terms on
RHS above under certain approximation. The term
(A6% + kz*) in the denominator of the first term can be
written as

2
A +kz? = 0% 1+ kzz .
A0

If (kz*/A0%)<<], i.e. spiral growth in the z-direction is
much smaller than the growth in ©, then kz/16° may be
neglected and the complete first term gives

4
(ae] ®

However, under the same approximation, the second term
reorganized as

(Z’J(i")[l@z]’

1+
ez’

approaches zero and may be neglected.
Therefore, the wave equation will finally read,

Lo [ a6, 1 0 5
popl op 02 00°  03z°

1) e,
pZ 08 9 - 02 : (9)

Upon further simplification and rearrangement, the equa-
tion can be represented as

Po 10 15 120
ap’ Y ,0 06 p* 0 00
8¢
+— 0.
22 P ¢ (19

For solution of the wave equation, let us assume ¢=
P(p)Y(6)Z(z) as the product of functions of independent
variables for their separation. Upon effecting the differ-
entiations and dividing throughout by ¢, one arrives at the
equation,

10°P 110P 1 ¥ 1 2 o¥
— +— + + —
Pop*> Ppip p*¥06* p* YO0
. 19°Z o _0
7ok o2 (11)
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Let

192
7 97>

=-m’, (12)

which gives the immediate solution,
Z — eiimz

; (13)

and eq. (11) turns to be,

¥ 1 2 oY
+_
p* PO 90

1op
P 8,02

1 oP 1
—
Ppdp p*¥ 06°

2
w 2
+[—2—m ]:O
4

(14

(15)

With this substitution, eq. (14) now reads,

¥ 1 2 oY
_I____
Vol AL

1 92pP
P 8,02

1 oP 1
+
Ppdp p*¥ 06°

+y=0. (16)

Multiplying by ©° throughout,

0’ 82P+,08P 19 1 20¥

_ +—Z——4y2p? =0.
P op* Pop Yoo Y000

an

Assuming

1 82‘1‘
¥ 96>

2 0,
0w 90

a constant, the equation turns to be

0" 2 0¥

S+ P =0.
06° 600

(18)
This is an equation in standard form, which can be reduced

to normal form using the standard technique to provide
the solution

eiia&

17

¥ = (19)

Now the radial equation to be solved reads,

, 9P
Pop?

por

— 0
P dp

+(Pp* —a)

>
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or

2
, 9 1; oP 20,

—+p—+(j/2p2 —a*)P =0.
o0 o0

This is Bessel equation with argument yp. It may be noti-
ced that the equation is free of conch parameters, K and .
Equation (20) has Bessel functions of order ¢, i.e. J,(}p)
as its solution. Hence the complete solution, including
time dependence is given by

A
¢:AJa(p}/)Tei‘”ze““, (21)

where 4 is a constant of integration.

In order to match the solution with physical parameters
of the conch shell, we now apply boundary conditions on
acoustic impedance of the system.

By definition

Z = —, 22
SE (22)
where P is given by
P=0c¢ =iwog, (23)
where ois the density.
Therefore,
z =109 (24)
S¢

At the open end, & being the velocity is non-zero and
impedance is 0. This implies that ¢ vanishes. But since ¢
is a product of three independent functions, each of them
simultaneously must be zero.

One may take the z and &solutions. The most general z
solution can be written as

z=a,cosmz+b, sinmz. (25)
Taking a,, = 0, z vanishes at z = z,,
if sin(mz) =0 = mz;=nzx,
T
or m="2_ wheren=0+1,+2,+3, ... (26)
Z

Similarly, the 8 function, i.e. ¥(6) vanishes when

sin a0=0 = af=Pr

where P=0,1,2,3, ...

>

Pr
or o =——
1
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But for the shell, 8= 87 on completion of four turns.

So o= g 27)

Finally let us consider the condition of the Bessel func-
tion vanishing at p = a, where a is the final radius of the
spiral. Now from the defining relation, eq. (15),

(28)

It may be noticed that, putting » =0, suppresses the
frequency component due to linear growth and limits w/c
to ¥ only.

Again from eq. (21), J,(py) =0 at p=a. So J,(ya) =0.
Assuming p =1, o= 1/8.

But the values of ya for zeros of Jyg will never give
harmonics and hence are not the correct solution for the
conch shell. The only harmonics solutions are possible
for av=1/2,1.e. for p =4 in eq. (26). It is known that

1
Jip(ya) = sin(ya),
Jzya

and its zeroes occur at ya =17, 7=0,1,2,3, . . ..

ForT=l,;/a=ﬂ',J/=£,
a

w T
or —=—,
4 a
or =2 (29)
2a

Further, a factor of \/5 comes from double the volume
with reference to Figure 2 and the explanation that
follows later and is to be multiplied in the denominator to

Figure 2. External geometry of the conch shell.
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give the final frequency formula in terms of the conch
radius as

c

2\/5a .

But in the case of the conch spiral the radius vector a is
not reached by the disturbance continuously. It comes in
successive steps in the spiral growth and hence takes the
same time as the disturbance takes to travel from the apex
to the mouth. So the effective radial distance is the length
of the spiral, which turns out to be L = 47z\/5a_ Therefore
replacing a by 4x2awe get the final frequency formula

= (30)

_ C
167ma

3D

It has been demonstrated earlier by us' that the eq. (31)
agrees fairly well with experiments in providing funda-
mental frequencies of samples of the conch shell.

Let us now look into the actual conch geometry. If 2/ is
the length of the shell, its radius grows up to approxi-
mately length / and then onwards it gradually reduces
shaping the other half of the shell almost in the form of a
cone (Figure 2). In Figure 3 we present such a cone and
consider propagation of sound from the cone mouth
towards its apex. The sectional area of the cone at any z is
given by

S, =ztan® O- (| —z)°,

where © is the constant angle of the cone.
One can rewrite the Webster’s horn equation for this
particular case to arrive at

2
(In.S) :8_?+

¢ _Po 00
0z 0z

— =+
¢t 0922

— 32

99
0z (z—D

8_¢ 2
0z

Letz—I=¢ =dz=d¢l

With this substitution, the wave equation, i.e. eq. (32)
will be

o ¢ 0 2
=t = 33
27 WL B9

4

with the solution,

£ 2241
e (o

e

Upon application of the condition of openness at z =/,
we get

794

new

w

—(/-1)=% =

; ( 0) tnrz, or @ -1 (34)
e

r f_z(l—lo)' (35)

Forzvery close to/, say /- /lo=1cm =0.01 m,

1= 35 3B 159500z

C2x0.01 002

and the subsequent harmonics are all above the ultrasonic
range of 20,000 Hz. Hence, in a way, the theory predicts
the possibility of existence of ultrasonic component of
sound in the conch notes.

We apply radiation intensity formula here as appropri-
ate for a conical horn. It is pertinent to point out here that
for the conch shell, the solution for velocity potential
appears as the product of three independent functions,
p, W and Z. However, the frequency dependence of the
intensity may be ensured out of the z-component only,
when it is taken as

¢:iei(wz—kz)’ 36)

where € is the solid angle open for radiation.

e 2y
s
v TUSN
[ \~—_‘¥-x\
a1 | =
.—""’f
N AT
a A\
i |
i
|
-z = | Z -
Figure 3. Lower half structure of a conch shell.

/?:/1 cm

Intensity

Zo=kcm

> Iy

Frequency —»
Figure 4. Frequency—intensity curve.
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With usual argument and redoing all steps as described
in standard texts®’ for a conical horn, the radiation inten-
sity is given by

dw  po  APoc K

= , 37
dt  20c  25Q (1+k°z} GD

where z; is a point in the z-direction from the lower apex
of the shell, where the opening of the mouth piece is
located. The frequency—intensity curve as indicated by
the theory is given in Figure 4.

It may be noticed that for the conch shell, /- z; is very
small, may be of the order of less than 1 cm. In this case
the response may be steep and the intensity may be uniform
for all higher frequencies. This predicts that the ultrasonic
frequencies and their overtones, if at all present, will
appear with almost uniform intensity.

In this communication, we have presented the problem
of propagation of sound waves in the coiled tunnel of a
conch shell cavity; set up the Webster’s horn equation in
circular cylindrical coordinates and solved them. The solu-
tions with application of proper boundary conditions, and
physical situation, offer expressions for frequency, which
computed with the conch parameters give the correct
match with the observed frequency. Existence of the
ultrasonic component in the conch spectrum is indicated
by the theory. The theory further points out uniform
intensity distribution for such high frequency compo-
nents.
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Makhana (Euryale ferox Salisbury) grows as an exclu-
sive aquatic cash crop in shallow water bodies in north
Bihar and lower Assam regions of India. It has nutri-
tional and medicinal properties and supports cottage
industry. It is a monotypic genus and the available
genetic variability is limited. An attempt was made to
understand the cultural practices, genetic variability
among the available germplasm and the biochemical
changes during seed germination. It was included in
an improvement programme using gamma ray indu-
ced mutagenesis. Different morphological parameters
were selected to find out its sensitivity to different
doses of gamma rays.

Keywords:
tion.

Makhana, gamma rays, monotypic, muta-

EurvaLeE FEROX Salisbury (Nymphaeaceae), known as
Makhana, is distributed in tropical and subtropical
regions of south-east and east Asia. It grows as an exclu-
sive aquatic cash crop in shallow water bodies in north
Bihar and lower Assam regions of India. It has nutritional
and medicinal properties and supports cottage industry. It
is cultivated in ponds, lakes, tanks and other aquatic
bodies. Distribution, ecology, agronomy, biology, pests,
production and processing of Makhana have been com-
piled earlier’. The major drawback with Makhana cultiva-
tion is that the interlacing ribs of leaves and petioles are
prickly. The mature fruits are borne on long pedicels and
are difficult to harvest due to the stout prickles on the
outer surface. Makhana is a monotypic genus and the
available genetic variability is limited. Although it is an
important aquatic crop, work on its improvement was not
initiated earlier using the conventional breeding and
induced mutagenesis techniques. Because it is a mono-
typic genus, induced mutagenesis is the best available
method for its improvement. An attempt was made to test
the sensitivity of Makhana to physical mutagen and to
induce desirable genetic variability (spineless strain, new
better varieties, early flowering/early maturity strains,
high yielding variety with increased seed number, increa-
sed seed weight, increased seed size, increased fruit num-
ber, increased floral stalk, increased berry size, etc.)
through induced mutagenesis.
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