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ing the absence of surface rupture during great and major
earthquakes in the Himalaya, we propose that the subduc-
tion of sediments play an important role in not allowing
the rupture to outcrop near their up-dip termination. Deep
drilling in the Andaman and Himalayan regions through
the plate boundary interface/detachment and geochemical
analyses of the recovered sediment core and modelling of
the effects of sediments in controlling the rupture charac-
teristics may possibly provide further evidence in support
of this hypothesis.
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Sex ratio, though a significant trait in natural selec-
tion, was left open in Darwin’s explanations of natural
selection. The first explanation for sex ratio being
equal was that of Fisher. Since then, several instances
of deviation from equal sex ratio have been described
both in invertebrates and vertebrates. Melopsittacus
undulatus is an exotic monogamous pet bird. Male and
female on becoming sexually mature form a lifelong
pair bond. During the breeding phase of their life (3—4
years) the female lays several egg clutches. Since 2005,
120 pair bonded sets in a sequence of five successive
generations were reared. Data on male/female ratio of
the 120 pairs showed a definite linear pattern of sex
ratio shift among the offsprings across the clutch
sequence of the pair bonds. This sex ratio shift is
found to be directly correlated to the physiological
status and reproductive behavioural courtship display
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of the females. These indicate a causal linkage bet-
ween the sex ratio shift and female fecundity status.

Keywords: Female courtship displays, linear sex ratio
shift, Melopsittacus undulatus, physiological status.

SEXUAL reproduction is advantageous as it adds varia-
tions to populations for natural selection. Darwin noted
that the proportion of males and females in the population
1s more or less equal, but did not provide any reason for
the same. It was Fisher' who first explained that sex ratio
i1s approximately equal in the population as a whole,
because each future offspring receives genes equally from
parents, and the total effort spent on producing the two
sexes being equal. Following this, however, several
biased sex ratios have been reported with different expla-
nations. Hamilton® observed female biased sex ratio in
parasitic wasps that mate in small groups and explained
the bias on the basis of local mate competition among
males that are genetically related. In higher vertebrates,
Trivers and Willard® found healthy mothers to produce
higher proportion of males. In addition to maternal condi-
tion, Cockburn et al.* attribute the possibility of mothers
adaptively manipulating the sex ratio of their offspring
based on the assessment of their mate’s qualities. Char-
nov® explains sex ratio as an evolutionarily stable stra-
tegy of a population with a bias in production of either
sex, where parents investing more in the rarer sex will
leave more grandchildren relative to the rest of the popu-
lation. Meta-analysis of the sex ratio of several ungulate
species showed a positive correlation between offspring
sex ratio and maternal quality®. Incubation temperature,
an environmental factor, changes the sex ratio from
equality in Australian bush-turkey:; at lower temperature
the sex ratio is male biased, whereas at higher incubation
temperature it is female biased”. Among Spanish imperial
cagles, there is a deviation of nestling sex ratio that
depended on the age of breeding mates® whereas in
American kestrels, sex ratio varies with the season. Early
in breeding season, the sex ratio of fledgling is male
biased, but is increasingly biased towards the female as
the season progresses’. Pair bond duration of the mates, a
behavioural factor, influences the sex ratio in brown thorn
bills; females in new pairs produced broods with signifi-
cantly fewer sons than females in established pairs'.
Male biased broods of blue tits depend on song variables
of the male mate''. Thus it is seen that sex ratio is a dyna-
mic inherent trait of animal’s sexual reproduction and its
deviation from equality is the result of several nonran-
dom, multidimensionally dependent causal linkages that
still remain to be investigated. Hence, the sex ratio of
offsprings in the clutches of a large sample of male-
female pairs (120 pairs) of the monogamous budgerigar
Melopsittacus undulatus was evaluated for sex ratio
dynamics and possible causal linkages to fecundity status
and courtship displays.
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Figure 1. M/F ratio of the offspring of successive clutches of five

successive generations of the budgerigar, Melopsittacus undulatus. a,
Scatter diagram of the M/F ratio of 120 pairs. b, Weighted average of
the expected and observed M/F ratio.

M. undulatus after hatching become sexually mature
within 150-180 days. They are not seasonal breeders, but
one male and one female after complex behavioural
interactions form a pair, remain unseparated as a breeding
unit throughout their life. They mate and breed, and the
females over a period of four years of her lifetime lays
several egg clutches (7-8 clutches). During the courtship
and mating for each egg laying bout, they exhibit specific
behavioural pattern that comprise autopreening, allo-
preening, vocalization, beak bite, to and fro shifting,
copulation solicitation and beak up. From 2005 onwards,
the male/female ratio (M/F) of the offspring of 120 pairs
of these budgerigars were obtained. The M/F ratios of
120 pairs were obtained from six different mating pairs in
a sequence of five successive generations (20 sets).
Among the total young ones produced by each female of
the pair during her lifetime, about 53.7% were found to
be males and 46.3% were females. Proportion test of each
did not reveal any significant difference in the percentage
of males and females (Z =0.75, P> 0.05). However, on
plotting a scatter diagram of A/F ratio of young ones
produced by each female in each of their successive 7-8
clutches of the 120 pairs, a linear trend of M/F ratio
change is noted (Figure 1a). This leads to a hypothesis
that there is a definite sex ratio shift in the offsprings of
M. undulatus across their clutch sequence, which can be
verified by a suitable theoretical model. As generation of
clutch sequence is a function of time, time series model
was derived for the prediction of sex ratio of the observed
data of the successive clutches of the female budgerigar.
The model equation adopted on the basis of least squares
theory is

Y(T)=AT + B, )

where Y(7) is the M/F ratio of each clutch sequence 7.
The coefficient 4 and constant B are estimated values
derived from the following two normal equations

SY(T)=AST + NB, (2)
STV =AXT*+ BYT, (3)
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where 27" is the arithmetic sum of the clutches (1, 2,
3,....8)and N=8.

Solving eqgs (2) and (3) gives the estimated values of A
and B, for each of the 20 sets. Significance of the 4 and
B were tested by ‘r° test. Substituting the respective
values of 4 and B in eq. (1) gives the predicted values
of M/F ratio of each clutch in 20 sets. The correlation
coefficient (R) between the predicted M/F ratio and the
observed M/F ratio was calculated. Subsequently, coeffi-
cient of determination (R*) was obtained which suggests
the goodness of fit of the constructed model given in
eq. (1). In 18 of the 20 sets of pairs (6 each) R® was
between 0.8 and 0.9, and in the remaining two >0.6.
Since in all 20 sets of male—female pairs (6 each) R? was
> 0.6, the weighted average of M/F ratios of the 20 sets
was calculated and fitted with the time series model (1)
constructed similarly for the weighted average. R® of
the M/F ratio of the predicted weighted average and the
observed ones are very high (Figure 1 b).

Figure 1 a shows that the M/F ratio shifts from 2.25 to
0.2 in the egg laying clutch sequence in the lifespan of a
female. Sex ratio is male biased (A//F > 1) in the earlier
clutches which means that more males are produced dur-
ing that phase. In the midphase of the sequence, propor-
tion of males and females is equal. Towards the later
phase of her lifespan, more females are produced as
evidenced by a female biased sex ratio (M/F < 1). Such a
linear shift in the sex ratio across the clutch sequence
(Figure 1 b) obviously can be a species trait that has some
significance.

Several factors such as environmenta , mate pheno-
type'™? and age of the breeding mate® bring about
changes in sex ratio. Nutritional factors of the females
during the sequence of egg laying led to changes in the
sex ratio of gulls®’. Sex ratio changes are possible in
broods of birds at different time spans of breeding
sequence” . In facultative biparental care system, the
sex ratio of the young ones from primary females is male
biased; whereas the sex ratio of young ones from secon-
dary females is female biased®’. Extra pair mating can
also result in either more of males or more of females™ .
But the high R?, linear M/F ratio shift of the young ones
in each of the sequence of 7-8 clutches of M. undulatus
indicate that it is a phenomenon of the species possibly
having some adaptive significance. Frank”’ hypothesized
behavioural and physiological factors to result in sex
ratio changes. This was considered as a hypothesis to
search for behavioural and physiological factors that are
causally linked with the linear sex ratio shift of these
birds.

The female of the pair bond exhibited seven distinct
behavioural displays that lead to mating (autopreening,
allopreening, vocalizations, beak bite, to and fro shifting,
copulation solicitation and beak up). Number of eggs laid
in each clutch (clutch size) and percentage of eggs
hatched in each clutch (hatchability) were considered as

7,9,12,13
1 9,12,1
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the measures of physiological factors that are related to
fecundity. As in the case of M/F ratio, a time series
model was constructed for prediction of the given beha-
vioural and physiological factors for comparison with the
observed data. R* was found to be high (>0.6) only for
vocalization frequency (VF), beak bite frequency (BF),
clutch size (CS) and hatchability (H). The weighted aver-
age of VF, BF, CS and H of the 20 groups was arrived at,
and compared with the prediction model as in the case of
M/F ratio. VF, BF, CS and H showed highly significant
linear decrease across the laying sequence (Figure 2).
Pearson bivariate correlation () of VEF (= 0.98), BF
(r=0.97), CS (»r=0.94) and H (»r=0.95) showed high
correlation with the sex ratio. This indicates a definitive
sex ratio shift in the clutch sequence of the M. undulatus
that is causally linked with reproductively behavioural
and physiological factors of the bird. Considering the
physiological factors, it is seen that during the early
phase, more males are produced when the reproductive
efficiency is high, and more females are produced during
the later phase when the female fecundity factors are low.
It appears that the offspring sex ratio is influenced by the
fecundity status of females. Producing females seem to be
less risky during low fecundity, and when it can afford to
take chances, it produces males.

The influence of female’s fecundity status on its off-
spring may be of some adaptive value that can contribute
to fitness potential. To what extent the sex ratio deviates
away from equilibrium at the population level may not be
casily ascertained. It may be noted that in the total young
ones produced by a female in her lifetime, the percentage
of males and females did not differ significantly. In a
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Figure 2. Time series of the expected and observed of the quantita-

tive measures of behavioural and physiological factors across clutch

sequence. a, Vocalization frequency. b, Beak bite frequency. e,

Hatchability. d. Clutch size.
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population of many pair-bonded mating pairs, each would
be at its own fecundity status with its consequent fecun-
dity dependent sex ratio in the clutch sequence. But this
potential of M. wundulatus makes it possible for their
population sex ratio to regain equal sex ratio, whenever
the sex ratio becomes biased, which can happen if the
fecundity of majority of the females in that population
reduces to a lower status.
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Erratum

Is the biological productivity in the
Bay of Bengal light limited?

[S. Prasanna Kumar er al. Curr. Sci., 2010, 98, 1331-
1339]

The caption for Figure 6 should read as follows: “Spatial
distribution of diffuse attenuation coefficient (m™) at 490 nm
K4 (490) during 10 June to 15 October (rop) 2001 and
(bottom) 2002. Filled and open circles are CTD and bio-
logical station location respectively. See text for details.”
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Correction

Cloning of Sclerotium rolfsii lection
gene and its nematicidal activity
[R. S. Bhat et al., Curr. Sci., 2010, 98, 1185-1186]

Page 1186, col 1, line 7 should read: ‘from sclerotial bod-

ies'* (kindly provided by Dr B. M. Swamy, Karnatak Uni-
versity, Dharwad) were also employed for the assay .
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