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How to use artificial viscosity ‘properly’ (i.e. without
excessively effecting the physics of the response) in
smooth particle hydrodynamics (SPH) computations
has been a long standing issue. Though SPH has great
potential in problems related to dynamic structural
mechanics, the loss of kinetic energy due to the ‘inac-
curate’ choice of artificial viscosity parameters may
result in physically unreal phenomena. Recently, the
effect of artificial viscosity in SPH computations has
been revisited and an acceleration correction algo-
rithm to recover the majority of the ‘lost’ kinetic en-
ergy has been proposed by Shaw and Reid (2009). The
essence of the acceleration correction algorithm is to
calculate the change in the acceleration due to the ar-
tificial viscosity term and then correct the computed
acceleration by subtracting a convex approximation of
the ‘changed’ acceleration. The energy equation is
accordingly modified. In the process, some of the un-
wanted energy dissipation is removed while retaining
the basic effect of the artificial viscosity in order to
have a stable computation. The approach used is rela-
tively straightforward and, in due course, this approach
will be optimized.

In this article, some additional numerical aspects of
the acceleration correction algorithm are discussed
and the method is further explored in the context of
some classical elastic-plastic impact problems. It is
shown that, together with the acceleration correction
algorithm, SPH can be used as a useful tool in dyna-
mic, inelastic structural mechanics.

Keywords: Acceleration correction algorithm, artificial
viscosity, energy dissipation, smooth particle hydrodyna-
mics.

Introduction

WHILE the application of the smooth particle hydrody-
namics (SPH) in astrophysical problems has a long his-
tory' ™, its application to dynamic structural mechanics,
in particular to elasto-plastic problems related to impact
mechanics is relatively new. SPH was first extended to
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problems in solid mechanics by Libersky and Pteschek®
and Libersky et al’. Thereafter several attempts have
been made to apply SPH for the numerical modelling of
high velocity impact and penetration problems®’. Due to
its particle nature, SPH is very effective in modelling
fragmentation and material separation which may be
caused by the formation of cracks and crack systems,
formed by the coalescence of a multitude of small crack-
like flaws®, physical phenomena encountered in several
areas of impact mechanics, which are not easily dealt
with by other methods. However the method is not yet in
general use as a standard tool in dynamic structural me-
chanics due to some inherent computational difficulties.
These include the use of the artificial viscosity to pro-
mote numerical stability, perhaps one of the major stum-
bling blocks. While artificial viscosity is useful in order
to model the effects of shock waves and other phenomena
caused by the discontinuous initial condition of physical
quantities (velocity, pressure, etc.), its improper use may
introduce excess dissipation which results in increasing
the entropy of the system and physically unreal beha-
viour.

In an artificial viscosity formulation, whenever the sys-
tem, say a gas, experiences any shock compression (local
jumps in physical quantities), an artificial viscous term is
introduced in the momentum equation as

& Ly, (1
dr e

where v, p and p are respectively the velocity, density
and pressure in the shock compression zone. There are
many forms of the artificial viscosity parameter Il present
in the literature. Nevertheless they have a common
generic form

I1 = aq pe, |Av|+ a, plAVI, )

where Av is the velocity difference across the shock
compression zone and (¢4, o) are the parameters which
define the strength of the artificial viscosity. The most
basic, physical property that artificial viscosity generates
is energy dissipation, i.e. it converts kinetic energy into
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internal energy. However one has to be careful, when
choosing the artificial viscosity parameters (¢4, o), that
it does not induce the equivalent of a “false’ pressure which
may lead to excessive loss of kinetic energy and make the
system over-dissipative, the predictions becoming corre-
spondingly unreal. This is of particular concern in impact
mechanics problems. Unfortunately there is not any stan-
dard set of parameters which work for a wide range of
problems. The ‘ideal’ situation would be when the form
of artificial viscosity does not need any user-specified
parameters and yet stabilizes the numerical computation,
without adding unwanted dissipation into the system.

In order to accomplish the above mentioned objective,
Shaw and Reid” recently proposed an acceleration correc-
tion algorithm. The essence of the method is to calculate
the change in the acceleration due to the artificial viscos-
ity term and then correct the computed acceleration by
subtracting a convex approximation of the ‘changed’
acceleration. The energy equation is also modified
accordingly. It is shown in Shaw and Reid’, exemplified
by three elastic and elastic-plastic impact problems, that
the acceleration correction algorithm is capable of remov-
ing the majority of the unwanted dissipation while retain-
ing the basic numerical effect of the artificial viscosity to
produce a stable computation.

Some additional numerical aspects of the acceleration
correction algorithm are discussed here and the method is
further explored in the context of a classical elastic-
plastic impact problem. The superior performance of the
acceleration correction algorithm vis-a-vis the SPH pro-
cedures with standard artificial viscosity is discussed.

SPH — a brief overview
Governing equations

The conservation equations for continuum mechanics are

dp "
W Pl )
ﬂ—_laaaﬂ (4)
b p nf
d_e___o‘aﬂ% (5)
dr p oxP

and
d;_[:v“, ©)

where for any material point, p denotes its mass density,
e the specific internal energy, v* and o are respectively
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the element of velocity and Cauchy stress tensor, x“ the
spatial coordinate, d/d¢ the time derivative taken in the
moving Lagrangian frame and the superscript "¢ indi-
cates the spatial direction. In eqs (3)—(6), the effect of
heat conduction is neglected assuming that the deforma-
tion process is locally adiabatic. The stress component in
eqs (4) and (5) may be written in terms of hydrostatic and
deviatoric stresses as

o =p5h_ % N

where P and S are respectively the pressure and the
components of the traceless symmetric deviatoric stress
tensor. The pressure in eq. (7) may be calculated through
an equation of state, which is generally a function of den-
sity (p) and the specific internal energy (e). The most
commonly used equation of states for elastic-plastic prob-
lems is the Mie—Gruneisen equation given by

P(p.e) = [1 —%Fnj Py +Tpe, (8)

where

PH=a077+b0772+00773f0r 77>031’1d PH:CO773

for 7 <0, )
(2
ao = poC?, (1D
bo=ao[1 +2(S- 1], (12)
co=ao[2(S— 1) +3(S— 1. (13)

Here, S and C are parameters describing the linear shock-
velocity and particle-velocity relation and I' is the
Gruneisen parameter.

Now, the Jaumann stress rate is given by

S = ﬂ[é’)’ﬂ —%5“"3‘”] + SR+ SPRT (14

where # is the shear modulus. The component &% of the
strain rate tensor and R of the spin tensor may be
obtained as

1{onv® P
.g{ﬂ _ |y Yy
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The plastic flow régime is determined by the Von Mises
yield criterion given as

7

o, =38P

is the Von Mises effective stress and o, is the yield stress.
At every time step the effective stress o, is checked and if
it exceeds the yield stress o, the individual stress com-
ponents are brought back to the yield surface as explained
by Shaw and Reid” using

oy
S%# = fS% where f :min{

S 1.
37,
Discretization of governing equations

In smooth particle hydrodynamics, first the computational
domain is discretized by a set of particles. Each particle,
say the ith particle, is associated with mass m;, density p;,
velocity component v, internal energy e;, elastic Wave
speed ¢;, pressure P;, deviatoric stress component S
and the Cauchy stress component ¢ = P — 5% . Then
the semi-discrete form of the governing equations is ob-
tained through a kernel approximation as®

%@Z"’—w Ly (18)
J J
ot
‘g’" [pl p] }Wv,& (19)
C:; :;mj(vf{—v?)[ii;ﬂ % ij]VVij,ﬂ (20)
and
dS“ﬂ

”Z {(v VYW, 5+ F PV,
—%(vf )M}rSfWRlﬂy +SPRY . (21)

In eqgs (18)—(21), =W(x;—x;.h;) 1s the kernel func-
tion with smoothmg length hy = (hl- +h;)/2 where h; de-
notes the smoothing length associated with the ith
particle. In this article, the cubic spline kernel function,
given in the following equation, is used.
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3,35
I-=¢°+=¢° 0<q¢<l,
24 4q q
1
W (g, )= ap, Z<2_q>3 1<g<2, (22)
0 q=2,

where @, =10/7z h* in 2D.
The artificial viscosity term I1; in eqs (19) and (20) is
given by,

2
TGy T O

I Py
if 7y - v;; < 0 otherwise I; = 0 23)
where
4 —h”"’—vg (24)
ry + Ehy
cy=(citepdl2, ry=x;—x;, vy =v;—v;and ry = ||yl

where (04, os) are the artificial viscosity parameters. In
eq. (30), € is introduced to prevent a singularity when
ry = 0 and is generally taken as 0.01 (ref. 3).

Acceleration correction algorithm

The method

Before proceeding to outline the acceleration correction
algorithm®, two observations relating to the use of this
algorithm are given here.

(1) The amount of dissipation an artificial viscosity
generates, whilst removing the unphysical oscillation
behind the shock front, depends mainly on the choice of
o4 and o5 has itself an insignificant effect on the overall
dissipation' ',

(i1) Some commonly (though heuristically ascribed)
used values of **”'% (¢, ) are (0.5, 0.5), (0.2 < < 0.5,
0.5<£<4.0), (1.0, 2.0), (1.0, 1.0), etc. Some authors
have also used™”'? (2.5, 2.5). However nothing is men-
tioned about the reason for choosing this large value
of ¢4. Based on some numerical experiment (a similar
experiment is also performed herein, see the fourth sec-
tion) it is shown in Shaw and Reid” that an SPH computa-
tion in solid mechanics can generally be stabilized with
o <1.

An intrinsic feature of the correction algorithm is that
(0, o) is set ab initio equal to (1, 1) in all of the impact
examples of the correction algorithm calculations per-
formed by the authors to date. It should be noted that, to
provide a direct comparison with the SPH solution of
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Libersky and Petschek”, values of (0.5, 0.5) were adopted
in the uncorrected version of SPH (based on equations
18-21) to compare with the corrected version in figure
6 b. It should be noted that, in general, (¢4, o) are not
arbitrarily, user-defined parameters in the version of the
correction algorithm illustrated in this article.

Thus, the first step in the heuristic algorithm is to set
the parameters (¢, o) in eq. (24) to (1, 1). Consequently
the form of the artificial viscosity becomes

2
_Cij ﬂij + Iuij

Ly _
Hij B o
i

if ryvy < 0 otherwise I =0. (25)

Using the artificial viscosity given by eq. (24), the
momentum eq. (19) may be rewritten as

[ aﬂ O—“ﬂ

pz pj

L

LD
: ] i.B ZmH Wl]ﬂ
j

(26)

Following the observations (i) and (ii), it is reasonable to
consider that eq. (25) is an overestimation of the artificial
viscosity and may introduce unwanted dissipation into
the system. This unwanted dissipation is removed by in-
cluding a correction term into eq. (26) as

aﬂ O—“ﬂ
= _Z m; —5 Wip

J pz pj

=2 m MGV, 5 - daf @7
where da? is taken as
da; :—Z(da +da W, . (28)

N
ith W = “x. h - _ D
with W, =W (x, —x;,h) and da; = ijl_[ij W, g

The basis for choosing the smoothing lengths A, and /&
are discussed in in the next subsection. Now, using eqs
(27) and (28), the corrected momentum equation may be
written as

of

==>'m; A Zm TI0, 4
] pz pj l]ﬂ

Dissipation term

1

+EZ[ka(H( )Wkﬂ+H ].k)ﬂ)]W
-

Correction term

(29)
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The energy eq. (22) is modified correspondingly as

ot >[ ] y

H<1 1>W

+— Zm(v

Dissipation term

(30

——Z(V -V )[kaﬂ kﬂVVzk]

Correction term

The main difference between the standard SPH and SPH
with the acceleration correction algorithm lies in the for-
mulation of the momentum and energy equations (see eqs
(19), (20), (29), (30)). By doing this, some of the prob-
lematic dissipation of energy is removed in a manner that
does not disturb the stability of the numerical solution,
since the basic effect of the artificial viscosity is retained.
However the ‘loss’ of energy is reduced to the benefit of
the physicality of the solution.

Calculation of smoothing lengths (h; and h )

The accuracy of SPH computations greatly depends on
the choice of the smoothing length. Some SPH computa-
tions assume that /4, is same for all particles, while others
prefer to use a spatially and temporally variable hj13’14.
Both approaches have their own merits and demerits. It is
desirable to use a variable /; (smaller for high particle
density regions and larger for low particle density regions
for any instant of time) in order to capture the local
behaviour and maintain the same level of accuracy every-
where in the computational domain. However, the inclu-
sion of the additional term which accounts for the
variablitiy of the smoothing length, makes the computa-
tion more numerically intensive'.

As far as the problems related to solid mechanics are
concerned, one major advantage is, the normally strong
cohesion between two particles. Therefore even in very
large deformation processes, one particle cannot move
too far from its neighbouring particle unless there is a
fracture or fragmentation of the material. Therefore, if the
initial particle distribution is quasi-uniform, it is reason-
able to take a constant h;=h for all particles. We
observed that approximately 25-30 neighbours per parti-
cle yields reasonably good results (in the context of
TREESPH Hernquist and Katz suggested 30-40
neighbours per particle). The smoothing length 4 for the
correction term is chosen such that each particle interacts
only with its nearest neighbours as shown in Figure 1.
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Figure 1. Smoothing lengths (4, and %).

Numerical examples

Example 1. Taylor impact problem

A 2D plane-strain model’ of an iron rod travelling
at 200 m/s which impacts a rigid surface as shown in
Figure 2 is considered. In Libersky and Petschek®, the rod
was discretized by 21 x 67 =1407 particles and the
smoothing length /& was taken as 0.0076 m. The rigid wall
was modelled by ghost particles'”, placed outside the
wall. The artificial viscosity parameters were taken as
(0.5, 0.5). The same problem is re-visited here. In order
to permit a valid comparison, all relevant data (geometric,
material and numerical) were taken as given in Libersky
and Petschek”.

In order to see the effect of artificial viscosity per se,
first an attempt is made to solve the problem without any
artificial viscosity (¢q =0, o5 =0). The deformed shape
of the iron rod at 50 us is shown in Figure 3. It seems that
particles crumble at the impact end of the rod. This is not
consistent with experimental observations or with the re-
sults given in Libersky and Petschek® This numerical
fracture may be ascribed to the instability due to the pres-
ence of high frequency oscillation near the shock front
caused by the initial discontinuous velocity profile be-
tween the rod and the rigid wall. By introducing some
dissipation in the form of artificial viscosity one may sta-
bilize the numerical computation. However, the strength
of artificial viscosity (or in other words the value of (o,
%)) required to run the problem without experiencing
any numerical fragmentation and instability is not known
a priori. Most of the SPH computations are performed
with some heuristically-taken (¢4, o) irrespective of the
particle distribution, choice of kernel function or the
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smoothing length. Therefore the accuracy of the predic-
tion through SPH computation with an arbitrarily chosen
(04, o) is generally questionable. In order to show how
the choice of the artificial viscosity parameters signifi-
cantly affect the accuracy of the solution, a numerical
experiment using the basic SPH equations (eqs (18)—(21))
was performed with different values of (¢, o). Figure 4
shows the deformed shape of the rod at 50 us obtained
with different (¢4, ¢%). It can be seen that the impact
(proximal) end of the rod experiences less bulging as (¢,
05) increases. This may be ascribed to the artificial vis-
cosity which acts as an energy sink and produces spurious
entropy into the system. This is also evident in the com-
puted kinetic energy shown in Figure 5. These observa-

B

/.

Figure 2. Iron rod impact impacting a rigid surface normally (exam-
ple 1). Parameters are given in Table 1.
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Figure 3. Deformation of the iron rod at 50 us as computed by SPH
without any artificial viscosity, i.e. (oq, )= (0, 0) in eqs (19) and
(20).
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Figure 5. Computed kinetic energy for the uncorrected SPH (eqs
(18)—(21) with different values of (or, o).

tions explain the discrepancy between the results ob-
tained via SPH and the EPIC-2 code as reported in
Randles and Libersky'”.

Now, running the program with the acceleration cor-
rection algorithm, the deformed shapes of the rod at 50 us
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a, Deformation of the iron rod at 50 us as computed by the uncorrected SPH with different values of

obtained via SPH and the EPIC-2 code are compared in
Figure 6. It can be seen from this figure that the standard
SPH with (&4 =0.5, & =0.5) result indeed shows less
bulging than that predicted by the EPIC-2 code as previ-
ously observed by Libersky and Petschek’ However, the
computed deformation using SPH with the acceleration
algorithm is in very close agreement with the EPIC-2
code result.

Example 2:  Parkes cantilever beam

In order to understand the role of elasticity in structures
undergoing impact loading, Reid and Gui'® examined the
transient behaviour of an elastic-perfectly plastic cantile-
ver beam carrying a tip mass which is subjected to a im-
pulsive loading as shown in Figure 7 (often referred to as
the Parkes cantilever problem'”). Using an FEM model in
ABAQUS, it was shown that during the initial stage of
the deformation process a plastic region (hinge) is formed
near the tip and starts propagating from the tip towards
the root. However due to the reflected precursor elastic
wave the progress of the plastic hinge is arrested at
approximately the centre, giving the beam a characteristic
local ‘kink’ there and delaying the root rotation phase of
the beam. This phenomenon was the key contribution of
Reid and Gui'®.

CURRENT SCIENCE, VOL. 97, NO. 8, 25 OCTOBER 2009
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Figure 6. Deformation of the iron rod at 50 us as computed by (@) uncorrected SPH (¢4 = 0.5, o, = 0.5) and (b) SPH using the accelera-
tion correction algorithm as described in section ‘Acceleration correction algorithm’. Results obtained via EPIC-2 code (Libersky and Pet-

schek*) are shown by bold line.
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Figure 7. Cantilever beam with tip mass.

For a given geometric and material properties, the initial
condition of the beam is defined by a non-dimensional
quantity called energy ratio, given by

Initial kinetic energy

R _GIVFEI

Maximum elastic strain energy A/ g L

; 3D

where G and V/, are respectively the mass and initial ve-
locity of tip mass, L the length of the beam, M, the fully
plastic moment of the beam, £ the Young’s modulus of
the material and / the moment of inertia of beam cross-
section. It was shown in Symonds and Fleming'®, that the
transient behaviour of the beam significantly depends on
R. The final tip deflection and the amount of plastic work
done during the beam deformation increase with increase
in R.

The presence of a source of dissipation in a numerical
simulation (like artificial viscosity in SPH) results in the
reduction of effective kinetic energy and thus the effec-
tive R used in the simulation. Hence this problem can be
used as a useful example in order to study the effect of
artificial viscosity and the efficacy of the acceleration
correction algorithm.
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Table 1. Parameters used in the Taylor bullet impact test simulations
Parameter Values

E (MPa) 2.08 x 10°
1 (MPa) 80 x 10°
o, (MPa) 600

L (m) 0.0254

B (m) 0.0076

V (m/s) 200

C (cm/us) (in eq. (10)) 0.36
S(ineq. (11)) 1.80

I' (ineq. (7)) 1.80

In this section, the Parkes cantilever problem is
re-revisited via the SPH method. Results obtained with
and without the acceleration correction algorithm are
compared with those given in Reid and Gui'®. The ge-
ometry and the material properties of the beam as consid-
ered in table 1, example 2 in Reid and Gui'® are given in
Table 2. Values for parameters C, S and I" are taken same
as given in the previous example (see Table 1) are taken
here.

The beam is discretized by 201 x 5 particles as shown in
Figure 8 a. A uniform smoothing length # = 1.3Ax (corre-
sponds to 30 particles on average within the support of the
B-spline kemnel function given by eq. (22)) is taken. Since a
2D plane strain model of the beam is considered, the width
(dimension along z-axis) of the beam is assumed to be one.
Consequently, the total mass of the beam is taken as plLd
instead of the original mass pLdb. Therefore in order to
keep the mass ratio (/) same, we scale the tip mass as

G=—. (32)

| Q
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Figure 8.
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a, Discretization of the cantilever beam by 201 x 5 particles; b, Tip mass is distributed over a small region near the tip;

¢, Tip mass is equally distributed over 5 X 5 particles (shown by red circle) at the tip.

Table 2. Material and geometrical properties of the cantilever beam
shown in Figure 2

Parameters Value

E (N/mm®) 2.069 x 10°

o, (N/mm?) 344

My (Nm) 24.8

o (kg/m®) 7493

L (mm) 304.8

b (mm) 6.6

h (mm) 6.6

G (kg) 0.0023

pB=pLbd2G 21.96

Vo (m/s) 481.6

Ko (D) 137.4

Using a similar approach to that adopted by Reid and
Gui'®, the tip mass is modelled as an extra mass distri-
buted over 5 x 5 =25 particles near the tip of the cantile-
ver beam as shown in Figure 8 5. Masses and initial
densities of these particles are modified as

_ G
m,=m; +—,
25
[
oA

where AV is the initial nodal volume obtained through a
Voronoi tessellation.

The initial velocity of the particles over which the tip
mass is distributed is calculated based on the conserva-
tion of momentum as

o
1l
= Qi

Vo (33)

where A/ is the total mass of the particles over which the
tip mass is distributed. For the given discretization (see
Figure 8), 7, =241.1m/s and the initial kinetic energy
K, of the system is 135.17 I.
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It was observed through a numerical experiment that an
SPH computation becomes unstable for o4 <0.1, irre-
spective of value of ¢,. Therefore (0.1, 0.1) is considered
as the optimum value for (¢4, o) for the problem (with
given particle distribution, smoothing length and kernel)
under consideration.

Extreme elastic vibration positions after all the plastic
deformation has occurred obtained via the SPH with
o4 = 0.1 and SPH with acceleration correction algorithm
are compared with the FEM solution'® in Figure 9 ¢ and
b. It can readily be seen that although the SPH with the
‘optimum’ choice of artificial viscosity parameter does
not experience any instability (or numerical fragmenta-
tion), the extreme elastic vibration positions are far less
accurate than those obtained via FEM. Whereas the
deformed shapes obtained via the SPH with the accelera-
tion correction algorithm are in very good agreement with
the FEM results.

Note however that deformation of the impact end is not
as curled as in the FEM solution. This may be explained
by the effect of plastic shearing close to the projectile.
This was not taken into consideration in FEM analysis'®
which used elements that could only sustain elastic shear.
This new SPH approach provides the opportunity to in-
vestigate this and other important features in such prob-
lems. A more in-depth study of this additional informa-
tion will be the subject of a future paper.

The variation with time of the computed total kinetic
energy of the beam obtained via SPH with ¢4 = 0.1 and
SPH with acceleration correction algorithm are compared
in Figure 10 and the superiority of the acceleration cor-
rection algorithm can easily be observed.

Closure

Artificial viscosity in SPH computations, is a numerical
necessity which requires some user-defined parameters.
Free choice of these parameters may lead to spurious

CURRENT SCIENCE, VOL. 97, NO. 8, 25 OCTOBER 2009
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Figure 9. Extreme elastic vibration positions of neutral axis after all plastic deformation complete () maximum at = 15.80 ms and
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Figure 10. Computed kinetic energy of beam.

entropy production into the system and make it over-
dissipative. This is of particular concern in impact
mechanics problems where the transient behaviour of the
structure in many cases depends significantly on the
transfer of momentum and kinetic energy from a projec-
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tile to the structure. In order to circumvent the above dif-
ficulty, an acceleration correction algorithm has been
proposed in Shaw and Reid”.

The essence of the method is to calculate the change in
the acceleration due to the artificial viscosity term and
then correct the computed acceleration by subtracting a
convex approximation of the ‘changed’ acceleration. The
governing equations, in particular energy equation, are
accordingly modified. It is shown in Shaw and Reid (ref.
9) that the acceleration correction algorithm does not
need any user specified parameters and yet stabilizes the
numerical computation without adding substantially un-
wanted dissipation into the system.

Some numerical aspects of the acceleration correction
algorithm are discussed here and the method is further
explored in the context of two classical impact problems,
the Taylor bullet impact problem and the dynamic,
elastic-plastic deformation of a cantilever beam subjected
to tip impact —the ‘Parkes problem’. Results obtained
via the SPH with the acceleration correction algorithm
are compared with the uncorrected SPH solution given
in Libersky and Petschek” for the Taylor bullet impact
problem and with the FEM solution given by Reid and
Gui'® for the Parkes problem. More details of the latter
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and related problems will be given in a forthcoming
paper.

The superior performance of the acceleration correc-
tion algorithm which does not require a set of numerical
experiments vis-a-vis the SPH procedures with the ‘opti-
mum’ artificial viscosity has been discussed and the effi-
cacy of the new method demonstrated for typical impact
problems.
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