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The Cosmic Microwave Background Radiation (CMBR)
is a nearly isotropic radiation that carries information
about the state of the Universe in its early phase and
about different physical processes that occur at differ-
ent times during the course of its evolution. The high
degree of isotropy is a compelling evidence of the in-
flationary model of the Universe. The nature of spe-
cific features on the CMBR like the minute level of
temperature anisotropy and polarization can narrow
down the parameters which govern the evolution of the
Universe. In these features the information about
the initial conditions, evolution, geometry as well as the
material content of the Universe is encoded. I have
given in this review an overview of the physics involved
in CMB studies and what it tells us about the Uni-
verse. I have also discussed the observations from
S-year data of WMAP and their implications.
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Introduction

THE Cosmic Microwave Background Radiation (CMBR)
has by now become an important source of information
about the nature, evolution and the constituents of the
Universe. Its prediction and its subsequent discovery has
provided compelling evidence that our Universe is des-
cribed by the Big Bang model. It gives us direct evidence
that our Universe was nearly homogeneous and isotropic
when it was about 300,000 years old. It also gives us a lot
of indirect information about the physics of early Uni-
verse and about the dominant processes operating at that
time. This has helped in building a model of the Universe
and its evolution. The physical processes in more recent
epochs also leave their imprints in the form of character-
istic signatures on the CMB. Once we have a reasonably
well-motivated and reliable model of the early Universe,
we can predict with reasonable confidence the features
which should be present in the CMB. These features can
get modified due to more recent processes. By observing
and analysing the features of the CMB, and hence know-
ing the deviations from these models of the early Uni-
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verse, we get a handle to understand the nature of these
physical processes in more recent times, which could
have induced these deviations. In other words, CMB is an
encyclopedia (albeit an encoded one) containing informa-
tion about the nature and evolution of our Universe and
the constituents it is made up of. The physics of CMB today
essentially deals with decoding of the information to gain
a more detailed understanding of our Universe.

In the standard Big Bang model, it was predicted that
we should be immersed in a radiation bath. The tempera-
ture of the radiation bath depends on the model we
choose. The prediction and observations about the back-
ground radiation have a long history and various
researchers have contributed to this in both theoretical as
well as observational fronts'. The existence of such a
background radiation and that its intensity is the same
from all directions was conclusively shown by Penzias
and Wilson?. The intensity of this radiation from all di-
rections is the same. This observation was made in 1965
for which they got the Nobel Prize in 1978. They made a
measurement of this radiation at a wavelength of 7.3 cm.
If the radiation spectrum is assumed to be of blackbody,
then the observed intensity at the above wavelength cor-
responds to a Planck spectrum of temperature 3.5+ 1.0 K.
However, this interpretation was under the assumption
that the radiation is Planckian, which at that point of time
was only a theoretically motivated speculation. However,
an important information which one got from this obser-
vation was that this radiation is isotropic. In other words
the intensity of this radiation received from all directions
is the same. As we will see later, this is a compelling evi-
dence of the homogeneity of the Universe.

We see today that there are structures on various
scales. The Universe is not completely homogenous over
all scales. It is believed that the structures we see today
started out as small inhomogeneities in the distribution of
matter in the early Universe. The gravitational collapse of
these small-density perturbations led to their growth’.
These structures lead to inhomogeneities which manifest
in the form of anisotropy in the CMBR today. There can
be ripples in the geometry, called gravitational waves,
which is a prediction of Einstein’s theory that can leave
imprints on the CMBR. Effects on the CMBR can also be
due to magnetic fields on cosmological scales and the
presence of free charges during different stages of evolu-
tion of the Universe.
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There are broadly three different features of CMBR.

1. Angular dependence: Intensity of radiation is almost
isotropic, but can have small dependence in direction.

2. Spectrum: The radiation is almost Planckian, but can
have slight deviations from it.

3. Polarization: Degree of polarization can be slightly
different in different directions.

The processes discussed in the previous paragraph leave
their imprint in the above characteristics to varying
degrees.

The primary feature about the CMBR is that it is iso-
tropic to a great extent. The angular variation” is one part
in about 10°~10°. Apart from more intricate features, even
the fact that CMBR 1is almost isotropic, strongly indicates
that the Universe underwent a brief period of rapid
expansion, known as inflation. We do not have any other
viable model that can explain the isotropy.

Beyond the basic overall isotropy, finer details of the
anisotropy also have information about the Universe en-
coded in them. This anisotropy is in the form of peaks
and troughs in the angular power spectrum over different
angular scales. The position of these peaks and their
heights (Figure 1) tells us a detailed story of the history
of our Universe and about dominant processes at different
epochs. It also tells us about the material contents of the
Universe and their relative proportions. By analysing
these features, we can get an idea about the evolution of
the geometry of the Universe. Similarly, the ionization
history of the Universe, nature and strength of cosmo-
logical magnetic fields and gravitational waves have
implications for the polarization of the CMBR. Compton
scattering from free electrons can lead to deviations from
Planck spectrum. The topic of microwave background is
discussed in a number of reviews™® and textbooks™ "’

In this article, I first describe the overall nature of the
gross features of the microwave background and the infor-
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Figure 1. Temperature anisotropy power spectrum for WMAPS (after

Komatsu et al.*®).
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mation it gives about the Universe. I then discuss two
specific features, namely that of temperature and polari-
zation anisotropy. I will discuss how these originate and
how we can characterize them. I will end the article with
the implications of the recent WMAP 5-year data.

The isotropic background

Thermal history in a homogeneous an isotropic
background

The origin of CMBR is intricately related to the thermal
and ionization history of the Universe. It has to do with
the fact that the Universe was very hot in the early phase
and subsequently cooled with time as it expanded. By the
expansion of the Universe we mean that the distance bet-
ween any two points (which are at rest with respect to
their local environment) increases with time. Since this
aspect is central not just in the context of the CMBR but
any issue related to cosmology, we will discuss this. The
expansion of the Universe is quantified by a parameter
called the scale factor, which is a function of time. Since
the Universe is assumed to be homogeneous and iso-
tropic, this parameter can only depend on time and not on
spatial coordinates.

In a flat static (Minkowski) spacetime, the spacetime
line-element is given by,

ds? = df — (dx? + dy* + dz?). (1)

The spatial distance is defined as the value of /-ds” at a
constant time. Similarly, time interval is defined as \/ds_2
at constant spatial coordinates.

For an expanding Universe one generalization of this
line-element turns out to be,

ds? = dr* — & (n[dx* + dy* + d27), (2)
which in spherical polar coordinates takes the form,
ds* = dr — *(D[dr* + 17 6* + Fsin*(Hd ¢, (3)

The time-dependent function, a(f), which multiplies the
spatial intervals is called the scale factor. The expansion
of the Universe would mean that a(¢) is an increasing
function of time. It turns out that there are other possibili-
ties too for an expanding, homogenous and isotropic Uni-
verse. In general, the line-element is given by,

2
ds? =di* —a* (1) %+r2d02+r2 sin2(@)dg? | (4)
— K/

The constant k=1, 0. It turns out to be more useful to
define a new time coordinate,
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dn=dta(s), &)

called the conformal time. The line-element in terms of
these coordinates is given by,

2
ds? =a* (0| dy? —%—rzdez -2 sin2(<9)d¢2}. (6)
r

For photons we have ds* = 0 and for any material particle
with non-zero mass, ds*> 0. Clearly, for a photon that
travels radially (so that without loss of generality we may
take =0, ¢=0), we have dy= idr/\;l—k/rz. The evo-
lution of the scale factor depends on the nature of the
constituents of the Universe. This in turns dictates the
time evolution of density and pressure of these constitu-
ents. The volume element varies with time as o>, If p and
P are the density and pressure, the energy conservation
equation becomes,

d(pa®)  ,d@)
dt P dt

=0. (7)

Further, if the equation of state is given by,
P=wp, ®)

we conclude from the above equations that the density
varies with the scale factor as,

,0 oc a—3(1 +w). (9)

For radiation, the equation of state parameter, w = 1/3.
With this value of w, we see from eq. (9) that for radia-
tion, poc o', This behaviourmay be understood in a sim-
ple way. The number density of photons drops as the
inverse of volume and hence as a. Further, the energy
(and hence the frequency) of every photon drops as a .
Both these effects combine to give the above variation of
energy density with scale factor. The evolution of the
scale factor at any point of time will primarily be gov-
erned by the constituent whose energy density dominates
the Universe at that time. For most kinds of matter the
scale factor evolves with time ¢ as a power-law, a o 1"
with 0 £n < 1. Hence, we conclude that the energy den-
sity of radiation is more in the past, and earlier the epoch
we consider, higher is the density.

The CMBR which we observe today is believed to be
this relic radiation of the early Universe. The spectrum of
the CMBR is a blackbody spectrum. The energy density
of the blackbody spectrum is proportional to the fourth
power of temperature, poc 7. Together with the fact that
poca we find that the temperature of radiation is in-
versely proportional to the scale factor a. Since a o< ¢*, we
see that the temperature of radiation in the past was
higher. Further, the earlier the epoch we consider, higher
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is the temperature. Hence, it is expected that at a suffi-
ciently early era, the temperature of the Universe was
high enough to ionize the atoms and maintain them in the
ionized state.

Origin of CMB and the homogeneity of the
Universe

The nature of the CMBR is closely related to the ioniza-
tion history of the Universe, which in turn is related to
the temperature of radiation in the past. The ‘normal’
matter in the Universe consisted of about 75% hydrogen
and 25% helium. As we saw in the previous section, the
temperature of radiation is expected to have been more in
the past. The earlier the epoch, higher was the tempera-
ture. At some epoch in the past the temperature of the
radiation must have been high enough to ionize the mat-
ter. The temperature which is just sufficient to sustain
matter in the ionized form depends on the ionization en-
ergy of matter. For hydrogen, for instance, the ionization
energy is 13.6 eV. From the time—temperature relation of
the radiation, this fixes an epoch when the radiation tempe-
rature is sufficient to ionize the matter. The epoch when
this happened is called the epoch of recombination. We
denote this by ¢, and the corresponding scale factor by a,.
The temperature when this happens is about 3000 K.
Prior to this epoch, the temperature would have been
even higher, so that the matter could be sustained in the
ionized form.

The degree of ionization at a given temperature is given
by the Saha ionization formula'®,

/
x? 1 m, T i o )T (10)
1-X, n +ny 27
Here, X, is the free electron fraction and is equal to,
n
X, = < 11
< ne +nH > ( )

where #, and ny are the number densities of free electrons
and hydrogen atoms respectively. m,, m, and my are the
masses of electron, proton and hydrogen atom respec-
tively. When the temperature is very high, the degree of
ionization X, is almost unity. With cosmological expan-
sion, when the temperature drops to a particular point
called the ionization temperature, the degree of ionization
drops rapidly to zero. It is important to note that this tran-
sition 1is fairly well defined, although it is not instantane-
ous. Since the temperature drops with time due to
cosmological expansion, the matter in the Universe
makes a transition from plasma state to a state of neutral
atoms.

Since photons couple strongly to charged particles,
during the plasma phase the photons undergo significant
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scattering. Thus before the epoch of recombination, the
photons undergo a random walk due to scattering from
charged particles. Thus any direct information they carry
from the early Universe gets washed out. However, after
the epoch of recombination, the electrons and nuclei
combine to form neutral atoms. Hence, the scattering of
photons becomes negligible. Thus after this epoch, most
of the photons can travel unhindered in a straight line. In
order to capture the basic essence of the process, the
situation in 1+ 2 dimensions is shown in Figure 2. Dur-
ing the pre-recombination epoch, the photons keep get-
ting scattered into random directions. After a scattering
event, the photon moves freely along a light cone till it
undergoes the next scattering at a different location at a
future time. After this scattering again the photon goes in
a random direction, but still along the light cone. The
photon thus undergoes a Brownian motion. This process
of alternate scattering and free flight continues till the
epoch ¢, which is the epoch of recombination. As a crude
approximation, we can consider the recombination as an
instantaneous process. The last scattering launches the
photon as before in a random direction, but since there
are no more free charged particles available after this
epoch, the photon does not get re-scattered. (As stated
this is only a crude approximation. In reality, although
the transition from the plasma phase to a neutral phase is
fairly sharp, it is not instantaneous. This approximation
will suffice for our purpose here.) Consider a point P as
shown in Figure 2 at the epoch of recombination. From P
there will be photons emitted in all directions. The photon
scattered into a particular direction will reach the

L t ~\
et : PLp P,

Circle of last scatter Pre recombination

Figure 2. Circle of last scatter in a 1 + 2 dimensional Universe.
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observer today. Photons from a point P; would have
reached the observer’s location and gone past at an earlier
epoch. Similarly, a photon which got last scattered for the
last time at a point P, has not reached the observer at
time #y. The locus of the points from where the photons
would have reached the observer at ¢, forms a circle.
Thus the observer perceives an apparent circle from
where the photons are reaching him/her. Since this is the
circle on which the photons got scattered for the last time,
this can be called the ‘circle of last scatter’. For the case
of the 1 + 3 dimensional Universe that we inhabit, instead
of the circle of last scatter we will have a spherical sur-
face of last scatter with the observer at its centre. The
photons when they started out from this surface must
have had the temperature corresponding to the ionization
temperature of matter. This turns out to be about 3000 K.
However, while the photons travel through space in the
post-recombination era, the temperature drops due to the
expansion of the Universe. As a result, we receive these
photons at a temperature of 2.73 K today. For a black-
body radiation (from Wein’s displacement law), this cor-
responds to the microwave region. It comes from all
directions around us and it is interpreted to be of cosmo-
logical origin. It is hence called CMBR.

Blackbody nature of CMBR and proof of
Big Bang cosmology

The instrument called FIRAS (Far-InfraRed Absolute
Spectrophotometer) flown in the COBE satellite, has
made precise measurements of the spectrum of the
CMBR'" % In particular, this instrument looked for devia-
tions of the CMBR spectrum from a blackbody spectrum.
The deviations were measured to be less than 50 parts per
million". This is a strong indication that the CMBR was
in thermal equilibrium in the past. (Even if it is not in
equilibrium today, as long as it was in equilibrium in the
past the expansion of the Universe will not spoil the
blackbody nature of the spectrum®. The spectrum will
evolve into a blackbody spectrum of a lower temperature.
This is however true only if there is no injection of pho-
tons.) Hence, it implies that the Universe was very hot in
the past. This is one of the most concrete evidences for
the Hot Big Bang model.

Isotropy of CMBR as an evidence of cosmological
inflation

The observation that the CMBR is isotropic, brought to
focus a paradox in the standard model of the Universe. In
the late 70s and early 80s a new model was suggested to
resolve this problem. This model and its variants are col-
lectively referred to as inflationary models. The fact that
these are the only models that accommodate the observed
isotropy of the CMBR, implies that this is a strong evi-
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dence in favour of an inflationary Universe. In this sec-
tion we discuss the origin of this problem in standard
cosmology and address the issue of its resolution in infla-
tionary models.

Once again let us go back to the 1+ 2 dimensional
Universe and then generalize to the real Universe of 1 + 3
dimensions. Consider the 1+ 2 dimensional spacetime
diagram in Figure 3. Consider two portions 4,4, and BB,
on the circle of last scatter. Isotropy implies that all
points on the circle should be similar. In particular, the
radiation coming from the region 4,4, and BB, should
be at the same temperature. We, however, see that each of
these regions is inside different forward light cones. The
region 414, cannot be affected or influenced by the point
B, and the region B;B, cannot be affected by point 4. As
a result within the framework of standard (pre-
inflationary) model of the Universe, the issue of why the
CMBR is isotropic and hence, the Universe homogenous
does not have a resolution. This problem is referred to as
the horizon problem.

In the late 70s and early 80s, it was noted that if the
Universe had undergone rapid expansion (now called in-
flation) in its early phase, many of the outstanding prob-
lems in standard cosmology (including the above-
mentioned horizon problem) have a resolution'*°. In
these models, the Universe is believed to have undergone
an exponential expansion in which the scale factor in-
creases by a factor of about 10*® with in a time interval of
about 107" s. In the simplest models this is supposed to
have taken place about 107° s after the Big Bang. The net
effect is that the photon trajectories or so modified in the
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Figure 3. The horizon problem.
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very Universe (much before recombination) that the en-
tire circle of last scatter (and similarly, the spherical sur-
face of last scatter in 1 + 3 dimensions) is engulfed in a
single causally connected domain. With this mechanism
it is no more a surprise that the CMBR is isotropic. Thus
the observed isotropy of the CMBR tells us that the Uni-
verse must have undergone a phase of inflationary expan-
sion.

Anisotropy of the CMBR

It was recognized after the discovery of the CMBR that
the formation of structures in the Universe should have
left an imprint in the form of anisotropies in the CMBR'.
The successful detection of the anisotropy in the CMBR
by the DMR [4] on COBE satellite heralded a new era in
cosmology. The observed anisotropy at the level of 1 part
in 10° narrowed down the list of acceptable candidates
for dark-matter in the Universe. While it was found that
cold dark-matter models could be accommodated, hot
dark-matter candidates were ruled out. This small level of
anisotropy also ruled out several baryon-dominated mod-
els'™'?. After that many experiments have observed the
angular anisotropy over different scales. The most recent
of these is the 5-year data release of WMAP®. Later
in this article the results and the interpretation of these
results will be discussed.

Characterizing temperature anisotropy

In order to understand the origin of anisotropy, it will be
useful to once again start with an illustrative example of a
1 + 2 dimensional Universe. In such a case we had seen
that the photons we receive are from a circle of last scat-
ter located at the epoch of recombination. If the Universe
were homogeneous at that time, the nature of the photons
received from all the points on the circle would have been
similar. However, if there were inhomogeneities, all the
points on the circle of last scatter would not be at the
same temperature. The photons we receive from different
points on the circle of last scatter would be different.
Thus we would see the radiation to be anisotropic. Let us
go further and discuss how to analyse this anisotropy in
temperature. First of all we can define an average tempe-
rature as

127[

T, = jd@T(@). (12)
0

o

We may then define a fractional deviation of temperature
from this mean value as

_TO)-1,

£(0) 7

(13)
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Since the fractional deviation is defined on a circle, it can
be expanded as a Fourier series, and it is often more con-
venient to work in terms of these Fourier coefficients.

In the real 1 + 3 dimensional Universe, the temperature
in any direction is denoted by 7(8, ¢). We define a mean
temperature,

T 27

1 .
Ty=1- j j sin(0)dod¢ T'(6, ¢). (14)
6=0 ¢=0
We express the temperature in any direction as,
1(0. ¢) = To[1 + B0, ). (15)

where (8, ¢) is the fractional perturbation in the tem-
perature A7/T,. As in the case of 1 + 2 dimension, it will
prove more useful to expand © in terms of a set of basis
functions, which in this case are the spherical harmonics
Y1m(6, @) = Vi (B), which is a set of complete basis func-
tions defined on the celestial sphere.

O, = jdg 7¥ (R)O(h). (16)

The anisotropy is specified by the angular two-point cor-
relation function (BM)O(m)) =C(ex). This is a function
only of ¢ the angle between fi and m. The reason for
this is that due to isotropy, what matters is only the angle
between the two directions and not the direction in which
this set is pointing. If the temperature anisotropy has a
Gaussian behaviour, the anisotropy should be completely
describable by the power spectrum

Cléll’ ' = <(’-D;k'm'(’alm ) a7
The fact that the power spectrum C; is independent of m
has just to do with the fact that the quantity C(¢) depends
only on the angle between A and m. One may look at it
in the following way. Since no particular direction is spe-
cial, we can take the direction n to be the z-direction.
Thus o becomes the polar angle. Further, since the direc-
tion m is only constrained to make an angle o with n
but is otherwise arbitrary, the azimuthal angle has no
role.

From the point of view of measurement, even if we
have perfect instrumentation without error, there is a basic
error called cosmic variance which we cannot escape. It
arises from the fact that for every / mode there are 2/ + 1
number of m values which contribute. Hence, for any
given /, there is an uncertainty in the value of C; which is
given by,

2 1/2
ACZ = Cl [W) .
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(18)

The mean square temperature anisotropy is ((A7)?)=
Té[C(O{)]a: o. In terms of C;s we have,

1/2
20 +1
,/<(AT)2> =T [ C } . (19)
0 ; "ar
In the large / limit this becomes,
- 1a+nc, 17
Kar? =1, j dnh) ==~ . (20)

The quantity usually plotted to show the behaviour of
temperature anisotropy for various / values is either the
power per unit logarithmic interval in I, (AT})? or its
square root, where

(1 +1C,

(AL )= T02 27

@D

Origin of temperature anisotropy in the CMBR

The Boltzman equation that describes the evolution of the
distribution function is given by,

d&f of &' of dp; of
+ T +?@—C[f].

dt  or

(22)

In the case of the CMBR photons, the collision term on
the right-hand side (C[f]) is primarily governed by the
Compton scattering process between the electrons and
photons. From the moments of the Boltzman equation we
can arrive at the equations for the evolution of excess
temperature of the CMBR. The nature of Coulomb inter-
actions dictates the form of the collision term. With these
two in eq. (22), we can derive the evolution equation of
the radiation temperature. Using the moments of the
Boltzman equation, the equation governing temperature
anisotropy turns out to be,

O +ikO = —@—ik,u‘l‘—z‘[@o —0+w, —%Pz(ﬂ)l_[:|.
(23)

(For details of the derivation the reader is referred to
Dodelson'® and Subramanian®'). © is the Fourier trans-
form of the temperature anisotropy and v, is the velocity
field of baryons in Fourier space. The term IT is the sum
of quadrupole terms of temperature anisotropy, polariza-
tion anisotropy and the polarization monopole term. @
and ¥ are perturbations in the metric and are related to
the gravitational potential perturbations. These perturba-
tions are dominant typically over angular scales of more
than 1°. The factor, 7 is the optical depth. The tempera-
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ture anisotropy over the largest angular scales arises from
the perturbations in the gravitational potential on the sur-
face of the last scatter. This is referred to as the Sachs—
Wolfe effect.

As the photon travels from the surface of the last scat-
ter, it passes through structures which are in the process
of collapse and hence in a time-dependent gravitational
potential that is deepening. This leads to further anisot-
ropies and the effect is called the integrated Sachs—Wolfe
effect. The baryon and the photon fluid are tightly cou-
pled to each other. This mixture behaves like a single
fluid. Perturbations in this fluid undergo acoustic oscilla-
tions. These oscillations at the SL.S manifest themselves
as crests and troughs in the anisotropy power spectrum.
The angular size (or alternatively the corresponding /
value) for a physical length scale depends on the back-
ground geometry through which the photons have travelled
to reach us. However, the correspondence is not one-to-
one. This is because due to projection effect, a range of
physical length-scales will correspond to the same angu-
lar scale. The contribution to the angular power spectrum
for a certain / comes mainly from / = k(7, — #*). Here 7,
and #7* are the conformal times corresponding to today’s
epoch and the epoch of recombination respectively. Be-
cause of the projection effect, however, this value of / is
not the only contribution but only the predominant one.

We will now summarize the information we can get
about the parameters in cosmology from the structure of
the angular power spectrum curve™. The angular power
spectrum has a series of peaks. The values of / at which
the peaks occur are

P
l—nﬂ'i’]0 i

T RG

Here r,(#*) is the comoving sound horizon at the epoch
of recombination. The curvature of the Universe has a
bearing on the location of the first peak. The odd peaks
tend to have a larger value than the even ones. This is due
to the non-zero value of the baryon density.

Characterizing the nature of the CMB
polarization anisotropy

Several features and processes in the Universe can induce
a polarization of the CMBR. Polarization, however, is a
much weaker signal compared to temperature anisotropy.
However, with the development of newer experimental
techniques one has started seeing signals of polarization
anisotropy, and the situation is expected to improve with
the satellite-borne experiments that are planned. Hence,
analysis of the CMBR polarization has now become more
important and interesting than before. Here we review
these characteristics in brief. For details, there are good
reviews and textbooks available® '%**%.

864

Conventionally polarization is described in terms of
Stokes’ parameters, I, O, U and V. Here, I is the total
intensity. Its information is encoded in the temperature
anisotropy. As we will see in the next section, polariza-
tion in the CMBR is caused due to Thomson scattering of
anisotropic radiation from free electrons. Such a process
can lead to a non-zero degree of plane polarization, but
cannot produce circularly polarized light. The Stokes’ para-
meter 7 is a measure of circular polarization. Hence, in
polarization processes in the context of cosmology, this
parameter is taken to be zero. Thus we may assume that
to describe polarization in the context of cosmology, we
could work with the two Stokes parameters, Q and U. The
Stokes parameter QO measures polarization in the vertical
and horizontal directions. U measures polarization at
+45° with the horizontal. It is immediately clear that a
pure Q-type polarization goes to pure U-type just by rota-
tion of the coordinate system. Ideally one would like to
have a description which does not depend on the coordi-
nate system. One might naively think that this is possible
if we define a particular direction as universal. This is
true in a two-dimensional Euclidean surface, but not on
the celestial sphere as it is non-euclidean. This can be
seen through the following example. If we have a hori-
zontal plane described by a two-dimensional Euclidean
geometry, then one can define a universal reference axis
and specify orientations of straight lines with respect to
this. The specification of this direction is unique, no mat-
ter where the straight line is located.

The situation is not simple when we are describing ori-
entations on the surface of a sphere. Two small line seg-
ments at well-separated locations on a spherical surface,
both of which are pointing north-south, will have two dif-
ferent orientations. The situation is similar in the case of
polarization. The polarization directions are specified on
the celestial sphere, which obviously in not Euclidean. To
measure/compute polarization anisotropy, we need to cor-
relate polarization direction at two different locations.
Due to the complication arising out of non-Euclidean
geometry, this exercise is non-trivial if we simply use
the Stokes’ parameters O and U. If we were to correlate
the polarization orientation in two directions f and m,
that subtend a small angle with each other, then of course
one can make a flat-sky approximation over a small
region on the celestial sphere. (By small angle we mean
cos (A-h) < 27.) Since in this small region the devia-
tion from Euclidean nature i1s small, we can follow
the same procedure as in the case of a Euclidean
two-dimensional plane. We can define a direction in
the flat patch on the celestial sphere. The polarization
orientation correlation at two different points in this
nearly flat patch will not have any significant artefact
due to the non-Euclidean nature. However, if we need
to measure or describe the correlation at two points that
are well separated, we cannot make a flat-sky approxima-
tion.

CURRENT SCIENCE, VOL. 97, NO. 6, 25 SEPTEMBER 2009



SPECIAL SECTION: ASTRONOMY

We know that a spinor, which is invariant under a
rotation of 47 radians, is described by a spin-1/2 field.
Similarly, vectors which are invariant under a rotation by
27 are described by a spin-1 field. Polarization is invari-
ant under a rotation by 7z and is described by a spin-2
field.

Following Durrer®, we define the dimensionless Stokes’
parameters,

00 LU

ar 41 @H

Under rotation by an angle y; these quantities transform
as

O £1U’ = exp™ ¥ (O £10), (25)

r=1I, (26)

V=V, 27)
and hence,

Q' +ild =exp ™ (Q * ilh). (28)

Just as we expanded the temperature on the celestial
sphere in terms of the spherical harmonics, a spin-2 field
can be expanded on a spherical surface in terms spin-
weighted spherical harmonics, 1,1,

oo !
Qi => 3 ap ;1. (29)

1=2 m=—1

s

!
D (e £iby,) 1Y, (30)
m=—1

1

1l
(S8

Under parity transformation, a;j “ al_,f , € > ep, and
blm > _blm-

Our aim is to describe polarization anisotropy in terms
of variables, which like temperature anisotropy are in-
variant under rotation. Directly in terms of Stokes’ para-
meters, it is not possible as they are components of a
spin-2 field. However, one can construct spin-0 fields by
the folowing procedure. One can define spin raising ( #))
and lowering ( #J*) operators. Operating this twice on
spin-2 fields, one can construct spin-0 fields which have
this invariance property. The spin raising and lowering
operators are similar to the raising and lowering operators
one comes across in the context of angular momentum in
quantum mechanics.

The spin-0 fields thus constructed are much like tem-
perature anisotropy and can be expanded in terms of the
usual spherical harmonics. To this end one constructs
these operators which are defined in terms of their action
on the spin-weighted spherical harmonics.
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7 G = (JU+DUA-)DT,,. €2)
2 (21,) = ST+ VT -HY,,,. (32)

We can then define polarization parameters denoted by £
and B as,

=217+ P10, G3)

B= —i% [+ 50U (34)

Using these raising and lowering operators on both sides
of eq. (29) we have,

oo i
EM=3 Y el W),

(35)
1=2 m=-1
oo !

B(R)=> > b,Y, (h). (36)
1=2 m=-1

These two variables describe polarization, while at the
same time are invariant under rotation. We have already
mentioned the transformation properties of e, and by,
under parity transformation. Using this we find from the
above expression that B has negative parity and £ has
positive parity. Due to this property, the former is called
magnetic-type and the latter electric-type polarization.

The electric- and magnetic-type polarization aniso-
tropies are measured in terms of the power spectrum of
the respective quantities. As in the case of temperature
anisotropies, we define the power spectrum in electric-
and magnetic-type polarization anisotropies as,

CF = e, 37)

CF = by, ). (38)
We can also define the cross-correlation CP¢ as,

CPE = (O e): 39)

CISB should be zero because of £ and B are of opposite
parity. Similarly, CZ®B should also be zero. However, if
there were parity-violating processes, then they would
also be non-zero. Thus measurement of CF and C2°
can put bounds on parity-violating processes.

Origin of CMB polarization anisotropy

The possibility that the CMB could be polarized was rea-
lized*" in 1968. Consider the following situation shown in
Figure 4. Light is incident from point 4 to point P, where
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there is a free electron. Let AP be parallel to the y-axis.
Point P is vertically above a point O, where the observer
is located. OP direction is defined as the z-axis. For inci-
dent light, the direction of electric field oscillations isin a
plane parallel to the x—z plane. Hence, when this light dis-
turbs the electron at P, it will oscillate only in the x—z
plane, i.e. perpendicular to the y-axis. This oscillation
will lead to radiation. Consider the ray of light travelling
from P to O. Since the electron oscillation does not have
a component along the y-axis, the electric field vector
does not have a component in that direction. The oscilla-
tions along the z-axis do not contribute to radiation. This
implies that the radiation along PO has electric oscilla-
tions which are parallel only to the x-axis. Hence we find
that although the incident light is unpolarized, the scat-
tered light in the PO direction is plane-polarized. If at
sunrise or sunset, we observe the light from the zenith
through a polarizer, we will find that the light has a non-
zero degree of polarization. The free electrons in the
ionosphere scatter the light coming from the horizon.
When we look at the zenith at this time, the direction of
scattered light that reaches the observer from the zenith is
perpendicular to the direction of the incoming light. If the
incident light was from all directions with equal intensity,
it is easy to see that the scattered light along PO is unpo-
larized. This implies that the incident light needs to be
anisotropic. It turns out that if the incident light has di-
pole anisotropy, this is still insufficient to produce polari-
zation after Thomson scattering. In order to produce
polarization we need light (with a quadrupole component
of anisotropy) to be Thomson scattered off free charged
particles.

The Universe is believed to have undergone re-
ionization in the post-recombination era. With a quadru-
pole component in the anisotropy of the CMBR, this is

o)

Figure 4. Polarization from Thomson scattering.
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one possible scenario for the origin of polarization. An-
other situation that can cause polarization is the finite
thickness of the surface of last scattering. The electron
that is responsible for the last scattering of a photon sees
a quadrupole anisotropy from the last but one scattering.
Thus even without re-ionization, one does expect a pola-
rization signal in the CMBR. We had earlier discussed
the electric- and magnetic-type polarization. Scalar
modes (arising due to density and potential perturbations)
lead only to the electric-type perturbations. Cosmic mag-
netic fields produce solenoidal velocity fields that lead to
vector-type perturbations. These perturbations produce
magnetic-type polarization® . Models of inflation pro-
duce tensor perturbations in addition to scalar ones. The
magnetic type polarization can be produced by such ten-
sorial perturbations.

Recent developments and present status of CMBR
observations

Since the first detection of temperature anisotropy by the
COBE-DMR in 1992, several experiments have meas-
ured anisotropy over different angular scales. We now are
beginning to get information on the polarization proper-
ties of the CMBR also. The most recent results on the
CMBR are the WMAPS.

Details of the angular power spectrum have a wealth of
information. The scales that leave the Hubble radius dur-
ing the early phase of inflation are expected to affect the
large angle (low /) region of the power spectrum. A
model called punctuated inflation®* which fits with the
low value of quadrupole angular power has been pro-
posed. Here a two-stage slow rollover inflation model has
been considered.

The vortical velocity perturbations are produced by
tangled magnetic fields over small angular scales. For
1~10,000, a nearly scale-invariant spectrum of such
fields which have got redshifted today to 3 x 10~ Gauss
can produce temperature anisotropy’>' of about 0.3—
0.4 uK. These also are expected to produce B-type
polarization anisotropy> of a strength of about 0.4 uK.

The fifth-year data release of WMAP has further ad-
vanced our knowledge of the Universe and put stronger
bounds on the cosmological parameters. The angular
power spectrum derived from WMAPS is given in Figure
1. Various parameters leave their imprint in the features
of this curve. Further, the parameter space can be nar-
rowed down by analysing this curve in conjunction with
baryon acoustic oscillations and supernova data [20].

Density parameter and dark energy: There is now fairly
stringent constraint on the dark energy equation-of-state
and the density parameter in the Universe. We find that
the density parameter of the Universe is constrained as
0.9010 < Q < 1.0179, with the equation-of-state parameter
constrained as —1.14 <w < 0.88. This implies that a spa-
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tially flat Universe with cosmological constant as dark
energy is perfectly consistent with observations.

It has also been suggested by a number of authors that
the dark energy equation-of-state could be a function of
time, or alternatively, a function of the scale factor. In the
absence of any theoretical handle on the possible varia-
tion of the equation-of-state parameter for dark energy, it
is important to constrain the behaviour of w. The reanaly-
sis of WMAPS gives us some handle by placing a con-
straint on the value of w today. The constraint imposed is
-1.33 <w <0.79.

Limits on non-Gaussianity: In the simplest models,
temperature anisotropy follows a Gaussian statistics. In
such models, the power spectrum or alternatively, the
angular two-point correlation function, specifies the tempe-
rature distribution completely. However, non-Gaussianity
of the temperature distribution can arise in certain situa-
tions. As stated earlier, cosmic magnetic fields, induce
non-Gaussian temperature anisotropy. Another source of
non-Gaussianity is nonlinear terms in the gravitational
potential function. The simplest way to characterize non-
Gaussianity is to calculate the bispectrum, which is
related to the three-point angular correlation function
0,,0;,,0,, . In Fourer space, the gravitational
potentlal CD(k) can be expressed as ®(k)= (k)+

®,, (k). These nonlinear terms in the grav1tat10na1
potential produce non-Gaussianity in the CMB. Denoting
the reduced bispectrum by bz L, for large angular scales,
we get (4 + DL +l)bl” ~Ex 10 ¥ fir, where fir is a
measure of the contribution of nonlinear terms in the
gravitational potential perturbations. The WMAPS-year
results constrain the values of fi; in two limits. One of
the limits is the local limit, where two of the / values are
much larger than the other. The other limit is the equilat-
eral limit where all the / values are almost same.

—9< filoeal <111, (40)

~151< fe < 253 (41)
The bispectrum arising out of primordeal magnetic fields
has been calculated®™ . For the bispectrum induced by tan-
gled magnetic fields, we have 4 (4, + D355+ Dby ~ 10 2

We had carlier seen that the cross-correlations CIB
and C, should be zero if there are no parity-violating
processes. Bounds on such processes can be specified by
the rotation of the polarization angle in the post-
recombination era. WMAP observations put the con-
straints on this rotation as —5.9° < Aa < 2.4°.

Concluding remarks

In this article, I have attempted to give a brief overview
of what kind of information is hidden in the CMB. I have
also tried give an idea of the method to quantify the fea-
tures in the CMB. COBE, WMAP and several other
experiments which have helped us to get precise data on
the CMB. With the launch of the Planck satellite, the sub-
ject of CMB is likely to get a further boost.
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