florases, handbooks, websites and author names (61 pages). The author has generally used in this edition, the classifications used in K. Kubitzki’s, The Families and Genera of Vascular Plants (1990) and the Angiosperm Phylogeny Group (APG) classifications. So far, eight volumes of Kubitzki have appeared. Its classification has been slightly modified in the APG classification, which incorporates the findings from molecular systematics and other recent work. (APG II: An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot. J. Linn. Soc., 2003, 141, 399–436) and the updates subsequently provided by P. F. Stevens in the APG website, www.mobot.org/MOBOT/research/APweb (presently version 8).

In the ‘Introduction’, the principles and rationale for following the taxonomic line are succinctly presented in nine closely printed pages. This takes into consideration the great advances being made in molecular systematics and genetics. It recognizes that monophyletic groups are scientifically more meaningful. The most remarkable outcome of these modern classifications (Kubitzki and APG II) has been that they broadly reflect the traditional classification based on the examination of herbarium sheets and classical taxonomy.

The author has followed a conservative approach in splitting families and genera. But, it has also resulted in some notable mergers and splits. For instance, okra (lady’s finger) in now Hibiscus esculentus, and tomato, Solanum lycopersicum. Amaranthaceae now includes Chenopodiaceae, Asclepiadaceae is back in Apocynaceae, and Abelmoschus is in Hibiscus, and so on. The unresolved problems of the 58 very large genera (having 500+ species) are also pointed out. The author laments that ‘with the imminent destruction of the remaining wild habitats and concomitant extinctions, exacerbated by global warming, we will never know what the future holds. We can carry on with much of today’s more fashionable biology “after Rome burns”, but the basis of systematics will just be impossible in the future’ (p. xi).

The more than 24,000 entries in the dictionary are compressed into 927 pages. Since much formation is included in each entry, it is given in a ‘telegraphic’ language. One entry is given below as an example.


‘Anisodus’ first described by Curt Polycarp Joachim Sprengler (1766–1833), who validated the name first suggested by Johann Heinrich Friedrich Link (1767–1851). Closely allied to and sometimes included in the genus Scopolia [see that entry]. Family Solanaceae [see that entry for further details] subfamily Solanioideae. Four species indigenous in temperate East Asia. Revision published in A. T. Hunziker, Genera Solanacearum, beginning on page 361. One of these is Anisodus luridus first described by Curt Polycarp Joachim Sprengel (1766–1833), who validated the name first suggested by Johann Hendrich Friedrich Link (1767–1851), a synonym is Anisodus stramoniiifolius; it is used as fodder for yaks in the Himalayas.’

Condensation has saved nearly three-fourths length.

The present reviewer has been using the ‘Plant-book’ for the past over 20 years. Only now has he noticed a printing-proof reader’s error. Angiosperm phylogeny is misspelt as ‘phylogey’ (p. 927). There are also a few, albeit minor errors in spelling and facts. Some examples: Sama is more correctly chama (p. 763), halvah is not Sesamum indicum (p. 388), but a sweetmeat preparation of Asia from the Middle East, to southwest, south, and southeast Asia. While in the Middle East, it is made from sesame powder and honey, elsewhere, it is made from rice or wheat flour and sugar or molasses. In the coconut (Cocos, p. 199), it is the unopened inflorescence, about 40 cm long, that is tapped for toddy and not the stalk. Further, coconut fruit retains its viability in sea water for more than 100 days (Purseglove 1985). Rice is described as the world’s most important food plant and wheat the most cultivated of all plants, providing 20% of calories to humankind. According to FAO statistics (www.fao.org), the area and production of the two crops (2007) were: wheat: 217.4 mha, 607.0 mt and rice paddy: 156.9 mha and 651.7 mt. Rice provides about 21% calories and wheat 20% to humans. These are but minor distractions in a volume that should find a place on the table of everyone interested in plants, especially students, teachers, botanists, and horticulturists. It is surely worth its price.