RESEARCH ARTICLES

Forecasting groundwater level using artificial

neural networks

P.D. Sreekanthl’*, N. Geethanjaliz, P.D. Sreedevi3, Shakeel Ahmed3,
N. Ravi Kumar® and P. D. Kamala J ayanthi5

'National Research Centre for Cashew, Puttur 574 202, India

*Sri Krishnadevaraya University, Anantapur 515 003, India

*National Geophysical Research Institute, Hyderabad 500 007, India
4Central Plantation Crops Research Institute, Kasaragod 671 124, India
*Indian Institute of Horticulture Research, Bangalore 560 089, India

The performance of the artificial neural network
(ANN) model, i.e. standard feed-forward neural net-
work trained with Levenberg—Marquardt algorithm,
was examined for forecasting groundwater level at
Maheshwaram watershed, Hyderabad, India. The model
efficiency and accuracy were measured based on the
root mean square error (RMSE) and regression coef-
ficient (R%). The model provided the best fit and the
predicted trend followed the observed data closely
(RMSE =4.50 and R”=0.93). Thus, for precise and
accurate groundwater level forecasting, ANN appears
to be a promising tool.

Keywords: Artificial neural networks, back-propa-
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WATER is the elixir of life and is crucial for sustainable
development. Earlier, it was considered to be a limitless
or at least fully renewable natural resource, but during the
past 20 years or so, there has been a tremendous pressure
on this precious natural resource mainly due to rapid
industrialization and human population, as an increase in
the human population will simply result in increasing the
demand for irrigation purpose to meet food production
requirements. Though the advancement in agricultural
technology has been impressive, in many regions poor
irrigation management has resulted in considerable deple-
tion of the groundwater table, damaged soils and deterio-
ration in the water quality, making the availability of
water in the future highly uncertain. Keeping in mind the
scarcity of available water resources in the near future
and it impending threats, it has become imperative on
the part of water scientists as well as planners to quantify
the available water resources for its judicial use. Thus, a
ready reckoner to monitor the fluctuations in groundwater
levels well in advance is the need of the hour to devise
sustainable water management protocols.

In this direction several studies were carried out for
forecasting the groundwater levels using conceptual/
physical models that are not only laborious, but also have

*For correspondence. (e-mail: pd sreekanth@yahoo.com)

CURRENT SCIENCE, VOL. 96, NO. 7, 10 APRIL 2009

practical limitations', as many inter-related variables are
involved. In the recent past, soft computing tools like
artificial neural networks (ANNs) have been used
increasingly in various fields of science and technology
for prediction purposes’. In particular, ANNs have been
found useful in the area of groundwater modelling.

The ANN is a general-purpose model with a limited set
of variables, and is used as a universal functional
approximator’. It can forecast many nonlinear time series
events*’ over conventional simulation methods®. Basi-
cally, ANNs are intelligent systems that are related in
some way to a simplified biological model of the human
brain. They are composed of many simple elements
called neurons operating in parallel and connected to each
other in the forward path by some multipliers called con-
nection weights. Usually, ANNs are trained by adjusting
the values of these connection weights between the net-
work elements. These networks have self-learning capa-
bility and are fault-tolerant as well as noise-immune, and
have applications in various fields like forecasting, sys-
tem identification, pattern recognition, classification,
speech recognition, image processing, etc’.

In this article, a reliable forecasting model for predict-
ing the groundwater level using weather parameters
through ANNs has been developed to have a precision
forecasting with added accuracy over the current methods
being practised.

Materials and methods

Study area

The input data for the present study were collected from
the Maheshwaram watershed, which is situated in the
Ranga Reddy District, Andhra Pradesh (AP) at a distance
of about 35 km from Hyderabad, AP, India. The water-
shed has an area of 53 km® (Figure 1). The study area is
situated between longitude 78°24"30”E and 78°29’00”E,
latitude 17°06"20”N and 17°11°00”N and forms a part of
the toposheet 56K/8. The topographic elevation is about
600-670 m amsl. Hot/dry summers and cool/dry winters
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characterize the area, with a distinct rainy season from
June to September. The temperature ranges from 22°C to
44°C, with an average rainfall of about 573 mm. The
region receives more than 80% of its rainfall from the
southwest monsoon. In general, the topography dips gently
from south to north in the watershed.

The area comprises of granites of Archean age with
thin soil cover of sandy loam and clay. These granites are
medium-to-coarse grained, pink and grey in colour, and
have undergone variable degree of weathering, ranging in
depth from 15 to 20 m followed by fracturing which
extends up to 2050 m depending upon the local hydro-
geology'®. A few dolerite dykes and quartz veins also
traverse the area. The area in general is undulating and a
majority of the area has a slope of 2%.

Maheshwaram is a closed watershed with no major
streams in the area. A network of first order and second
order streams culminate in a large tank known as Mankal
Cheruvu, which forms the discharge area. The weathered
zone has become completely dry due to over exploitation.
The existing wells tap the fractured bedrock, are in semi-
confined situation''. In general, the water-striking level is
around 25-30 m below ground level (bgl), whereas the
water levels are at depths ranging from 15 to 23 m. The
water-striking surface is always found to be at greater
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Figure 1. Location of the study area (Maheshwaram watershed).
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depth than the static water level, supporting that the aqui-
fers are in semi-confined condition. The tapped ground-
water (mostly through bore wells/submersible pumps) is
used for irrigation where the discharges are in the range
100-300 m*/day. The groundwater flow is from south-
west to northeast (main drainage) and from south to north
in other parts of the watershed.

Monthly water levels have been collected from 22
wells fairly distributed in the area'” (Figure 1) during
the study period 200006 (ref. 12). The monitoring wells
are all bore wells and water levels were monitored using
a graded tape that provides sound and light signals when
it touches water in the well, with an accuracy of 2 mm.
Care was taken to record the water level in all the wells
in the minimum possible time and also when the wells
were not being pumped (as the water level could reach its
natural condition). Data on weather parameters, viz.
evaporation, rainfall, relative humidity and temperature
(minimum and maximum) were collected from the local
hydro-metereological station established at the centre of
the Maheshwaram watershed by the Andhra Pradesh
Ground Water Department.

ANN architecture

Feed-forward neural network (FFNN) along with Leven-
berg—Marquardt back propagation (LMB) algorithm was
used with programing in Matlab 7.0.

FFNN: Here, the source nodes in the input layer of the
network, supply the respective elements of the activation
pattern, that constitute the input signals to the neurons in
the second layer. The output signals of the second layer
are used as inputs in the third layer, and so on for the
rest of the network. Thus, typically the neurons in each
layer of the network have their inputs from the output
signals of the preceding layer only. The set of output sig-
nals of the neurons in the output layer of the network con-
stitutes the overall response of the network supplied by the
source nodes in the input layer'” as shown in Figure 2,
which explains a typical FFNN with one hidden layer.

Hidden Layer
Input Layer

Figure 2. Typical feed-forward neural network.
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LMB: The LMB algorithm was designed to approach
second-order training speed without having to compute
the Hessian matrix. When the performance function has
the form of a sum of squares (is typical in training
FFNNs), then the Hessian matrix can be approximated as

H=J"J,
and the gradient can be computed as
g=Je,

where J is the Jacobian matrix that contains first deriva-
tives of the network errors with respect to the weights
and biases, and e is a vector of network errors. The Jaco-
bian matrix can be computed through a standard back-
propagation technique that is much less complex than
computing the Hessian matrix. Therefore, the Levenberg—
Marquardt algorithm uses this approximation to the Hes-
sian matrix in the following Newton-like update:

Xpe1 = xp — (ST +uly " Je.

When the scalar g is zero, this is Newton's method using
the approximate Hessian matrix. When y is large, this
becomes gradient descent with a small step size. New-
ton’s method is faster and more accurate near an error
minimum. So the aim is to shift towards Newton’s
method as quickly as possible. Thus, u is decreased after
each successful step (reduction in performance function)
and is increased only when a tentative step would in-
crease the performance function. In this way, the per-
formance function is always reduced at each iteration of
the algorithm.

Training and testing the data

The total identified nodes include the monthly observed
water levels in 22 sampled well points along with local

Table 1. Feed-forward neural network-Levenberg—Marquardt back

propagation {(FFNN-LMB) structures

weather parameters, viz. rainfall, temperature (minimum
and maximum), evaporation and relative humidity that
have a direct influence on groundwater levels. Here, the
input layer contains various layer nodes as given in Table 1.
In order to obtain good performance of the ANN, tuning
of the ANN architecture and parameters is indispensable.
Hence the ANN architecture was tested with various
numbers of hidden layers and nodes per hidden layer
to find better values and architecture. Thus, the whole
dataset was arbitrarily grouped into four different
sets, each with the randomly chosen respective well
points for training and testing of the selected ANN model
(Table 1).

Data set ANN structure Observations (well no.)
Set 1 12-20-5 1,6,11,18,20
Set 2 15-25-8 2,5,7,9,13,15,16,22
Set 3 16-30-9 3,4,8,10,12,14,17,19,21
Set 4 29-40-22 1to2

Table 2. FFNN-LMB performance
Parameter Set 1 Set 2 Set 3 Set 4
RMSE 4.50 6.97 3.13 4.50
R 0.92 0.84 0.96 0.93
Processing time (s) 3.06 13 356 1105
Epochs 12 181 245 56

CURRENT SCIENCE, VOL. 96, NO. 7, 10 APRIL 2009

Table 3. Lower and upper error variation in the estimated ground-
water levels
Error variation (%)

Well no. Lower side Upper side

1 -1.24 1.91

2 -2.67 1.47

3 -1.06 1.11

4 -2.52 1.30

5 -1.86 1.89

6 -1.03 0.64

7 -1.46 1.08

8 -1.06 0.96

9 -1.47 0.51
10 -1.60 0.90
11 -091 0.70
12 -0.81 0.71
13 -5.09 4.06
14 -0.62 0.58
15 -1.19 1.77
16 -1.28 2.20
17 -0.90 1.92
18 -1.21 1.00
19 -0.83 1.51
20 -2.08 1.81
21 -0.04 0.91
22 -1.11 2.65
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Figure 3. Overall mean trend showing observed/estimated water

levels using the FFNN-LMB model.
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In the case of set 1, the selected ANN structure was
12-20-5 (i.e. 12 input layer nodes, 20 hidden layer nodes
and 5 output layer nodes). Similarly, for sets 2—4, the
selected ANN structures were 15-25-8, 16-30-9 and 29—
40-22 respectively (Table 1). Mapping for the hidden
layer/respective nodes was carried out based on trial and
error method, as there is no standard methodology for
selecting the same'*. The applied transfer functions are
linear and log sigmoid for all the above structures.

The performance of a trained network can be measured
to some extent by the errors on the training, validation
and test sets, but it is often useful to investigate the net-
work response in detail using statistical parameters.
Therefore, the efficiency/response of the selected net-
work (in different sets) for accurate output was measured
using statistical indices, viz. error variation (EV), root
mean square error (RMSE) and regression coefficient
(R?) and calculated based on the corresponding measured
data, according to eqs (1)-(3).

EV =((y = »)/y)*100, )

where y is the observed data and J the calculated data.

RMSE = 1/2(% =¥’ /n, @)
i=l

=32
R2—1— Z(yi yi)_2 , 3)
Zy_z_&
n

where y; is the observed data, y, the calculated data and n
the number of observations.

RMSE indicates the discrepancy between the observed
and calculated values. The lower the RMSE, the more
accurate is the prediction. The best fit between observed
and calculated values', which is unlikely to occur, would
have R? as 1 and RMSE as 0.
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Results and discussion

The training performance of the FFNN-LMB for different
datasets is given in Table 2. Perusal of the data showed
that the minimum RMSE using FFNN-LMB was
observed with set 3 (3.13), which has 16-30-9 network
structures. However, for sets 1, 2 and 4, the respective
RMSE was found to be 4.50, 6.97 and 4.50. The process-
ing time was more for set 4 (1105 s) followed by sets 3, 2
and 1 (356, 13 and 3 s respectively). However, epoch
number was found to be more in the case of set 3 (245)
followed by sets 2, 4 and 1 (181, 56 and 12 respectively).
R? was found to be 0.92, 0.84 and 0.93 for sets 1, 2 and 4
respectively. The maximum variability explained through
R*> was found to be 0.96 (in case of set 3). The EV
between the calculated and observed data for different
sets is given in Table 3. Analysis of data in randomized
sets clearly showed that FFNN-LMB is the best-fit ANN
model for predicting the groundwater level in terms of
statistical significance (EV, RMSE and R?) as well as
processing flexibility (processing time and epochs) as
FFNN-LMB recorded lower EV, RMSE, processing time
and epochs.

Further, the data were analysed separately for each
independent well point to have a clear comparison of the
mean observed and estimated water levels. Here also, the
results exhibited similar trend as in the case of set-wise
data analysis, i.e. FFNN-LMB was found to be the best
fit for predicting groundwater levels at the Maheshwaram
watershed. This is clearly shown in Figure 3, where the
overall mean actual water level has been compared with
the predicted water level. Here, the predicted water level
trend followed the observed trend closely, showing the
accuracy of the network.

A number of studies have indicated that ANN can pro-
duce generalized models of environmental systems with
greater accuracy than conventional statistical tech-
niquesls’”. Recent literature reviews reveal that neural
networks, specifically the FFNNs, have been successfully
used for water resource modelling and prediction'®'"”. The
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performance trend of the model, individually for each of
the 22 wells along with actual and predicted values is
indicated in Figure 4, showing that the difference bet-
ween actual and predicted values is close to zero.

In this study, a better forecasting model using ANNs
has been developed for predicting monthly groundwater
level fluctuations in the Maheshwaram watershed. The
most suitable configuration for this proved to be the
FFNN-LMB method, as it showed the most accurate pre-
diction, and the overall accuracy of this model is around
93% (Figure 3). Further, a significant advantage of this
model is that it can provide satisfactory predictions with
limited groundwater level records also. Earlier also, many
researchers have proved that ANN models are the best
tools for predicting groundwater levels®®>*. Future
research efforts should be envisaged towards exploring
the use of soft computing tools for predicting groundwater
levels with more accuracy and stability over conventional
methods.
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