Parasitic infections are common in developing areas of the world, where the poorest of the poor live and affects an estimated 3.5 billion people. The three infections which constitute the leading single disease burden are malaria caused by Plasmodium spp., African human trypanosomiasis caused by Trypanosoma brucei rhodesiense and T. b. gambiense, and Chagas disease caused by Trypanosoma cruzi. Malaria was successfully reduced after World War II because of easy access to cheap insecticide and readily available drugs. At present, there are an estimated 300–500 million cases, and up to 2.7 million deaths each year. The genus Trypanosoma contains a large number of parasitic species which infect wild and domesticated animals and humans. Only four drugs are in use for the treatment of trypanosomiasis. All of them have to be administered parenterally and frequently cause serious side effects. The emergence and spreading of parasites resistant to drugs in use for their treatment indicates that novel compounds need to be discovered by identification of novel chemotherapy targets. Hence, the search for new anti-malarial therapies is a high priority for control of the disease. In the search for novel drugs against resistant parasites, the use of metal complexes has received considerable attention in recent years. In our effort to contribute to the search for novel chemotherapeutic drugs against parasitic diseases, we present the antimalarial and antitrypanosomal screening of metal complexes of some antimalarial drugs.

The metal complexes were synthesized as reported in the literature. The tests were performed as micro plate assays using T. b. rhodesiense (STIB 900), T. cruzi (Tulahuene C4), Leishmania donovani (MHOM-ET-67/L82) and K1 strain of Plasmodium falciparum (resistant to chloroquine and pyrimethamine). A description of these assays is reported elsewhere. The following were used as standard: melarsoprol (T. b. rhodesiense), Benzimidazole (T. cruzi), Mefloquine (L. donovani) and chloroquine (P. falciparum).

The exact IC50 values for the antiparasitic assays and cytotoxicity of the complexes are presented in Table 1. The Cu(II) complex of trimethoprim [Cu(TMP)2(CH3COO)4] exhibited the highest antimalarial activity (IC50 = 3.7231 µM). It is more active than trimethoprim (IC50 = 4.733 µM) and less toxic than trimethoprim (IC50 = 46.474 µM), and the widely used chloroquine (IC50 = 188.5 µM) was less active than trimethoprim but more toxic. All the metal complexes showed some level of activity against T. b. rhodesiense, with two Cu(II) complexes being the most active. The Cu(II) complexes of trimethoprim [Cu(TMP)2(CH3COO)4] showed the highest activity (IC50 = 3.411 µM), while the Cu(II) complex of sulfadiazine [Cu(SD)2(H2O)2] (IC50 = 15.063 µM) was the least toxic of all the complexes. The Cu(II) complex of trimethoprim (IC50 = 16.3 µM) was the only active compound against T. cruzi, while the Pt(II) (IC50 = 11.9 µM) and Pd(II) (IC50 = 16.6 µM) complexes of trimethoprim were the only active compounds against axenic L. donovani.

The incorporation of metals into the drugs has improved the antiparasito activities of some of the metal complexes. The Cu(II) complex of trimethoprim showed enhanced antimalarial activity against the resistant strain of P. falciparum, while both Cu(II) complexes of sulfadiazine and trimethoprim showed activity against T. b. rhodesiense, and were far less toxic than chloroquine. Although the activities of the complexes are not yet a challenge for the current generation of drugs in use, they will serve as leads for further structural modifications in the search for alternative therapy.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Plasmodium falciparum (K1) (µM)</th>
<th>Trypanosoma brucei rhodesiense (µM)</th>
<th>Trypanosoma cruzi (µM)</th>
<th>Leishmania donovani (axenic) (µM)</th>
<th>Cytotoxicity (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Cu(SD)2(H2O)2]</td>
<td>≥5</td>
<td>15.05</td>
<td>>30</td>
<td>>30</td>
<td>19.90</td>
</tr>
<tr>
<td>[Cu(TMP)2(CH3COO)4]</td>
<td>≥5</td>
<td>3.41</td>
<td>16.3</td>
<td>>30</td>
<td>40.83</td>
</tr>
<tr>
<td>[Pt(TMP)2(H2O)Cl2]</td>
<td>≥5</td>
<td>43.64</td>
<td>>30</td>
<td>16.6</td>
<td>>90</td>
</tr>
<tr>
<td>[Co(TMP)2Cl2]</td>
<td>≥5</td>
<td>63.18</td>
<td>>30</td>
<td>>30</td>
<td>>90</td>
</tr>
<tr>
<td>[Pt(TMP)2(H2O)Cl]</td>
<td>≥5</td>
<td>37.91</td>
<td>>30</td>
<td>11.9</td>
<td>>90</td>
</tr>
<tr>
<td>[Co(SD)2(H2O)]</td>
<td>≥5</td>
<td>50.50</td>
<td>>30</td>
<td>>30</td>
<td>>90</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENTS. I thank Prof. Reto Brun and Prof. Marcel Kaizer, Swiss Tropical Institute for help, and the National Research Foundation, South Africa and University of Fort Hare, South Africa for financial support.

Received 17 April 2008; revised accepted 15 October 2008.

PETER A. AJIBADE

Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa

e-mail: Pajibade@ufh.ac.za

CURRENT SCIENCE, VOL. 95, NO. 12, 25 DECEMBER 2008