Predicting the spatio-temporal variation of run-off generation in India using remotely sensed input and Soil Conservation Service curve number model

P. K. Gupta* and S. Panigrahy

Agriculture, Forestry and Environment Group (Remote Sensing Applications Area), Space Applications Centre, Indian Space Research Organization, Ahmedabad 380 015, India

The Soil Conservation Service curve number (SCS CN) model has been used in the GIS environment to compute run-off at spatio-temporal scales using remote sensing-derived rainfall for 2004 and climatic normal (1951–80) rainfall data. The SCS CN model takes into account land use/land cover, antecedent soil moisture condition and hydrological soil groups. Temporal 10-day composite Normalized Difference Vegetation Index images of SPOT–VGT sensor, and daily remote sensing-derived rainfall data at 10 km resolution from the NOAA Climate Prediction Centre have been used to generate the land cover and antecedent moisture condition (degree of saturation) respectively. Hydrological soil groups were prepared using the soil texture and their infiltration and drainage characteristics. Run-off coefficient maps were generated using the CN-based rainfall excess run-off. Wetland rice-growing areas of West Bengal, India were used to calculate threshold run-off coefficient (0.2) to identify run-off potential areas for major river basins of India during the monsoon season (June to September). There was a large difference in the spatial pattern of run-off estimated for the year 2004 compared to using normal climatic rainfall data. Area estimates for run-off potential were also found to vary significantly for the climatic normal and in-season (2004) data. The spatial variability showed high run-off potential in the western India river basins like Mahi, Luni, rivers of Saurashtra and Sabarmati in 2004. Run-off potential areas over India have been found to increase abruptly from June (158,700 km²) to July (712,300 km²), and decrease from August (633,400 km²) to September (142,000 km²) during 2004.

Keywords: Curve number, remote sensing, river basin, run-off.

INFORMATION about the spatial distribution and temporal variation of run-off potential areas at a regional scale is essential to understand its influence on conservation and development of land and water resources. Conventional techniques (installing stage recorder, current meters, etc.) of point run-off measurement are accurate and useful. However, in most cases such measurements are expensive, time-consuming and difficult. Therefore, rainfall–run-off models (empirical and physically based) are commonly used for computing run-off. There are distributed hydrological models which describe the physical rainfall–run-off processes controlling the transformation of rainfall to run-off. The advantage of these models is the accuracy of their predictions. But a major disadvantage is that they require extensive database, time and expertise to be used effectively. A good run-off model includes spatially variable parameters such as rainfall, soil, land use/land cover, etc. Therefore, in this study the Soil Conservation Service curve number (SCS CN) method was used, which is a versatile and popular approach for quick run-off estimation, is relatively easy to use with minimum data and gives adequate results. It is used extensively in various hydrologic, erosion and water quality models, including CREAMS, EPIC, AGNPS and SWAT. Generally, this model is well suited for small watersheds of less than 250 km², as it requires details of soil physical properties, land use and vegetation condition. Therefore, so far it has been used mostly as a lumped (taking the average value of the study area) model at watershed scale. However, advances in computational power and the growing availability of spatial data from remote sensing techniques have made it possible to use hydrological models like SCS CN in spatial domain with Geographic Information System (GIS). The SCS CN model has been used extensively on various watersheds of varied sizes. The model has been found to perform well without much calibration.

In the Indian subcontinent, run-off is generated mostly during the monsoon season (June to September) during a year. In this article, the SCS CN model has been used to estimate run-off for major river basins of India at 10 km cell size during the monsoon period of 2004. Run-off coefficient (RC) maps were also prepared considering the wetland rice areas of West Bengal as a mask on the estimated run-off to identify the run-off potential areas.

*For correspondence. (e-mail: pkgupta@sac.isro.gov.in)
Study area

Major river basins of India were taken as the study area for run-off potential area estimation. There are 17 major drainage basins (Figure 1). Three of these basins, i.e., Indus, Ganga and Brahmaputra are snow-fed in summer and the remaining basins are purely monsoon rainfall-dependent26,27. The Ganga and Brahmaputra–Barak (BH–BRK) basins cover 34% of the area of the country and form the largest drainage area. The basin of the Indus river flows in a southwesterly direction to Pakistan, covering 10% area. Basins of the Godavari, Krishna and Mahanadi rivers draining to the sea in the east cover 22% of the total drainage area. Seven other medium-sized basins of the Sabarmati, Mahi, Narmada and Tapi rivers flowing west and the Subarnarekha, Brahmani–Baitarani and Cauvery rivers flowing east together cover 15% of the total drainage area of India. Dependable rainfall (75% of total annual rainfall) is high (1657 mm) for West South Coast Rivers (WSCR), while it is low (296 mm) for the Indus river28.

Data used

Rainfall

Rainfall data (monsoon period: June to September) from two different sources were used in this study. Satellite-derived daily rainfall data of 10 km resolution have been downloaded from the NOAA Climate Prediction Centre (CPC) website (ftp.cpc.ncep.noaa.gov/fews/S.Asia) for the year 2004. CPC rainfall product gives semi real-time analysis of daily precipitation on a 0.1° lat./long. grid over South Asia (70°–110°E; 5°–35°N). Raw rainfall data (HDF format) were stored and prepared using the image processing (EASI PACE) and GIS (Arc-Info) software. Climatic normal point rainfall data (1951–80) available at a monthly scale, from 376 weather stations throughout India were collected from India Meteorological Department29. The climatic rainfall data were interpolated using inverse square distance interpolation technique with cell size of 10 km to obtain the spatial rainfall distribution pattern.

Land use/land cover

In general, Normalized Difference Vegetation Index (NDVI), which is based on differential absorption, transmittance and reflectance of energy by the vegetation in the red (0.61–0.68 μm) and near infra-red (0.78–0.89 μm) regions, is widely accepted and used in many research studies. It is sensitive to the phenology of vegetation30–33 and is least affected by topographic factors. The discriminant power of multi-temporal NDVI observations is based on their characterization of dynamics of vegetation growth. Therefore, land use/land cover map has been prepared using the multidayte (15 dates, May to September 2004) SPOT-VEGETATION 10-day composite NDVI data. The SPOT data are available in HDF format, which was later imported to PCI/DISK format to analyse using the EASI/PACE software. NDVI profiles for different land covers were prepared. The training sites for these classes were spotted with the help of land use and crop regions map of Survey of India34 and land use map prepared by Agrawal et al.32. A hierarchical logical model (Figure 2) for land-cover classification35,36 was prepared by studying the pattern of NDVI profiles. In the beginning, non-vegetation classes were classified, viz. wasteland, fallow, urban and water bodies. The second step was to discriminate forest areas and lastly crop areas were classified. In each stage classified areas of the previous stage were masked out while classifying the next land-cover class. Land use/land cover classification was done keeping in mind the hydrological requirement of the crop and land-cover classes. In the case of hydrological vegetation class, vigour is more important than the type of vegetation/crop. The rating of good, poor and fair crop was done based on a combination of factors that affect interception, infiltration and canopy of vegetative areas. Misclassification among land-cover classes found to be

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Major river basins of India (study area). WSCR, West south coast rivers; BKC, Between Krishna and Cauvery; BMG, Between Mahanadi and Godavari; BR–BT, Brahmani Baitarani; LRS, Luni river of Saurashtra; BH–BRK, Brahmaputra, Barak and others.}
\end{figure}
between related hydrological land-cover classes (good, fair or poor), thereby not affecting the curve number for run-off calculations.

Soil

Soil texture map for 1:6 million scale was taken from Survey of India7. This map was first scanned and then digitized in Arc Info. There are fourteen soil textures over India. Soil texture map was used to prepare Hydrological Soil Groups (HSGs) map.

Run-off potential area estimation

SCS CN model

The SCS CN model developed by the United States Department of Agriculture (USDA) computes direct run-off through an empirical equation that requires rainfall, HSG and land use/land cover. CN is a computed variable, which is based on the antecedent moisture condition (AMC), land use/land cover class and HSG. CN represents the run-off potential of the hydrological soil cover complex (HSCC). This model involves relationship between land use/land cover, HSG and antecedent soil moisture to assign CNs. The following required layers were prepared for CN calculation.

HSG: Soil textures obtained from the Survey of India maps were used to prepare the HSG map considering the soil infiltration and drainage characteristics of different soil textures5. Sandy and loamy sand were designated as HSG-A, sandy loam and loam as HSG-B, clay loam as HSG-C and clay as HSG-D. Area under different hydrological soil groups (A-D; high to low infiltration) was calculated and validated with the reported area30. In the present study, area under different soil groups was 8.3, 51.5, 17 and 23.2% (calculated considering total 319 mha area, which is exclusive of extreme northern and western areas beyond 35°N and before 70°E respectively) for the A, B, C and D groups of soil respectively. While the reported areas were 11.1, 53.7, 16.8 and 18.4% (calculated considering total 328 mha area) for the A, B, C and D types of soils respectively.

AMC: This was determined using cumulative last five days daily rainfall. The AMC was used as an index of wetness in a particular area. Three levels were:

AMC-I: Lowest run-off potential. The soils are dry enough for satisfactory cultivation (AMC rainfall <35 mm).
AMC-II: Average condition (AMC rainfall between 35 and 52.5 mm).
AMC-III: Highest run-off potential. The soils are wet from antecedent rains (AMC rainfall >52.5 mm).

Normal climatic rainfall data were available at a monthly scale. Therefore, antecedent rainfall ranges to identify AMC conditions were upscaled from cumulative last five days to the month period30.

HSCC: Land use/land cover and HSG maps were combined in the GIS environment to prepare combinations of land-cover type and HSGs. The combined map had 32 combinations (for four HSG classes and eight land use/land cover classes). These combinations are termed HSCC and used to assign the CN along with antecedent moisture condition. Tabulated CN values were used for these 32 combinations of HSCC for AMC-II30.

Since a standard table for CN values (ranging from 1 to 100), considering land use/land cover and HSG are given for AMC-II, the following conversion formulas were used to convert CN from AMC-II (average condition) to the AMC-I (dry condition) and AMC-III (wet condition).

For dry condition (AMC-I):

$$CN \text{ (AMC-I)} = \frac{4.2CN \text{ (AMC-II)}}{10 - 0.058CN \text{ (AMC-II)}}$$

(1)

For wet condition (AMC-III):

$$CN \text{ (AMC-III)} = \frac{23CN \text{ (AMC-II)}}{10 + 0.13CN \text{ (AMC-II)}}$$

(2)
Potential maximum retention: The potential maximum retention for a given HSCC is related to the CN and expressed as follows:

$$S = \left(\frac{25400}{CN} - 254 \right).$$

(3)

where S is the potential maximum retention (mm), and CN is dimensionless.

Initial abstractions: Losses due to infiltration, detention storage and interception were considered as initial abstractions. Vandersypen et al., developed the following relationship between initial abstractions and potential maximum retention for Indian conditions, for the black soil region with AMC-I and for all other regions:

$$I_a = 0.3 S,$$

(4)

where I_a is the initial abstraction which includes interception, surface depression storage, and infiltration into the soil.

For black soil region (AMC-II and AMC-III):

$$I_a = 0.1 S.$$

(5)

Run-off coefficient: The equation of run-off can be derived from the water balance equation under the critical assumption that the ratio of the predicted run-off to the potential run-off (rainfall-less initial abstraction) is equal to the ratio of the actual retention to the potential retention:

$$Q = \frac{(P - I_a)^2}{(P - I_a + S)},$$

(6)

$$RC = \frac{Q}{P},$$

(7)

where Q is the run-off depth (mm), P the rainfall depth (mm) and RC the run-off coefficient (fraction).

Threshold run-off coefficient

Rice is grown under wetland conditions where fields are banded and water is retained at a certain depth during the crop growth period. Depending upon the landform, the standing water depth in rice fields varies from 10 cm (shallow) to more than 50 cm (deep). Thus, traditional rice fields, which are rainfed and having inherent soil properties, act as a suitable site for calculating threshold run-off coefficient to identify run-off potential areas. Rice area map of West Bengal was generated using multitate Radarsat SAR data. Rice-area mapping was based on the contrast dielectric constant of water (80) and dry soil (4). Distinct signature of rice crop in temporal microwave SAR data was observed due to the initial water background in the field which helps to discriminate it from other land-use classes. The methodology is elsewhere. Daily RC maps were aggregated to prepare the seasonal (June to September) RC map for 2004. The rice mask of West Bengal was overlaid on the seasonal RC maps (for 2004 and normal climatic) in Arc-Info. The zonal statistics function, which calculates mean value for the area under mask, was used to calculate mean RC values. These mean values for 2004 and normal climatic period were again averaged to identify the threshold RC. Finally, run-off potential areas were identified using the threshold RC value for the major river basins of India using the logical analysis (RC > threshold value) in the GIS environment. The methodology for the threshold RC calculation is presented in Figure 3.

Results and discussion

Run-off potential areas identified using the threshold RC for the year 2004 and normal climatic rainfall data have been presented.

Run-off potential areas (normal rainfall data)

The threshold RC value of 0.2 was obtained using the wetland rice area of West Bengal and seasonal run-off coefficient map. Areas having greater than threshold
value of RC were identified as the run-off potential areas. Monthly spatial pattern of run-off potential areas in India from June to September months is presented in Figure 4. It was observed that the spatial pattern of run-off potential areas differed largely for each month. Monthly spatial run-off trends were found to match the corresponding rainfall pattern. Analysis showed that the run-off potential areas were of 334,800, 1,274,200, 1,159,500 and 194,500 km² during June, July, August and September, respectively, in the Indian mainland. Run-off potential areas occurred mainly during July and August in BH–BRK, Ganga, Mahanadi, WSCR, Subarnarekha, BR–BT and parts of Narmada and Godavari basins. During June run-off potential was observed in the BH–BRK and WSCR basins, while during September it was found in Subarnarekha, part of BH–BRK, WSCR, Ganga and BR–BT basins.

Basin-wise common run-off potential areas (mha) during July and August were also estimated. An area of 1,049,700 km² was found to have run-off potential during two months (July and August). The WSCR, BH–BRK, Mahanadi, Godavari, Subarnarekha, Narmada and BR–BT basins were found to have more than 50% of their total area under run-off potential during July and August. Highest run-off potential area was obtained for the Ganga basin (35.7 mha).

Run-off potential areas for 2004

Run-off potential regions were also calculated for the monsoon period of 2004. Month-wise spatial extent of run-off potential over the Indian mainland in 2004 is presented in Figure 5. During July and August run-off potential area was high, 712,300 and 633,400 km² respectively, compared to a low run-off potential area of 158,700 and 142,000 km² during June and September respectively. High run-off potential regions were mainly observed in BH–BRK, part of Ganga and WSCR basins during June; BH–BRK, part of Ganga, Subarnarekha, BR–BT, Mahanadi and Godavari during July; Ganga, Subarnarekha, BR–BT, Sabarmati, Mahi and Narmada during August and Godavari, BKC, Krishna and Cauvery during September.
Analysis of run-off potential areas for 2004 showed significant change from the normal climatic results both in the area estimation and spatial pattern, especially in the western regions, BH-BRK and WSCR. In August there was a major shift in the run-off potential region (area marked by the polygon in towards the west and northwest directions). These results show that there was significant variation in both total run-off potential areas as well as their location between normal climatic and the present scenario (2004). Similar seasonal fluctuations have been reported for the inundated areas over India during 1993 and 1994 using multi-temporal remote sensing data. Run-off potential regions estimated for monsoon season of 2004 and normal climatic year were compared with the reported estimates (Figure 6). Reported wetness regions (in % of the basin area) for six major river basins (Ganga, Mahanadi, Godavari, Krishna, Cauvery and Narmada) of India were compared with the estimated run-off potential regions. A good agreement ($r = 0.91$) was found between the estimated and reported wetness regions.

Basin-wise run-off potential areas were estimated for 2004 and normal climatic year, and are presented in Table 1. Comparative analysis showed significant differences in potential areas for most of the basins. Mahi, LRS and Sabarmati basins showed high run-off potential observed in August and a low value in July for 2004 compared to climatic normal period. This matched well with the flood events reported in these basins during 2004. Run-off potential areas were low for the BH-BRK and WSCR basins during the monsoon period of 2004. The low potential run-off estimates were due to hilly area and good vegetation coverage in the above-mentioned basins. Satellite data for the hilly regions (>750 m from msl) underestimated the rainfall due to negligence of orographic effect in the CPC algorithm. Also, good vegetation like forest cover in the basins reduces the CN and eventually run-off.

Further, dynamics of run-off potential regions was carried out at weekly intervals. Weekly spatial behaviour of run-off potential area is presented in Figure 7. Spatial ex-
tent of run-off potential areas varied significantly for each week over India and also among the major river basins. Week-wise run-off potential area and mean total rainfall over India are presented in Figure 8. Highest area of 1,117,600 km² under run-off potential has been obtained for the ninth week, while lowest area of 30,100 km² was observed for the fourth week (Figure 8).

Conclusion

Spatio-temporal information on run-off potential areas is required for many applications related to sustainable water use, including management of rainfed agriculture, surface water harvesting, etc. The present study provides an integrated approach to model the spatio-temporal pattern of run-off potential areas using the SCS CN model with remote sensing-derived inputs and ancillary data in GIS domain. In this study threshold value of run-off coefficient derived from the wetland rice fields was estimated and used to model the run-off potential areas. Run-off analysis using long-term climatic rainfall data showed that the run-off potential area in India was 334,800, 1,274,200, 1,159,500 and 194,500 km² during June, July, August and September respectively. Use of daily spatial rainfall data (satellite-derived) for 2004 showed that there was a large difference in the spatial pattern as well as in the area estimate of run-off potential compared to climatic normal run-off potential pattern. The run-off potential area in 2004 was 158,700, 712,300, 633,400 and 142,000 km² for June, July, August and September respectively. The study has shown excess run-off potential in some parts of the country and deficit run-off potential in other parts. For example, high run-off potential was observed in the western India river basins of Mahi, LRS and Sabarmati in 2004, which otherwise were low in climatic normal run-off potential pattern. The methodology proposed opens up the feasibility of real-time run-off potential area estimation at spatial scale.

RESEARCH ARTICLES

38. Dhruvanayanan, V. V., Soil and water conservation research in India. ICAR Krishi Anusandhan Bhavan, New Delhi, 1993.

ACKNOWLEDGEMENTS. This work has been carried out under the Earth Observation Applications Mission (EOAM) project on ‘Water Use in Agriculture/Command Area Management’. We thank Dr R. R. Navalgund, Director, Space Applications Centre (SAC) for support and encouragement. Guidance and critical comments from Dr J. S. Parihar, Deputy Director, RESA, SAC is acknowledged. Data on SPOT-VGT NDVI and daily rainfall obtained from the National Climatic Data Center (NOAA/NESSDIS), Asheville, USA and the NOAA, CPC respectively, is acknowledged.

Received 14 December 2007; revised accepted 30 September 2008

CURRENT SCIENCE, VOL. 95, NO. 11, 10 DECEMBER 2008