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Facilitated oxygen diffusion in muscle fibre
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This article highlights the problem arising from the
diffusion of oxygen in living tissues, which continuously
consumes oxygen. Oxygen not only diffuses into the
muscle fibre, but also binds with the myoglobin to pro-
duce oxymyoglobin. In the absence of external oxygen
supply, oxymyoglobin releases oxygen to meet its defi-
ciency. However, the oxygen concentration at the centre
of the muscle soon becomes zero, giving rise to oxygen
debt, a highly undesirable condition. The condition
which determines the movement of the boundary
separating the oxygen and non-oxygen media, depends
upon the rate of absorption of oxygen by the medium.
The problem is solved using the explicit finite-difference
scheme. The oxygen concentration has been obtained
at any point in the medium as a function of rate of
oxygen consumption and the facilitated diffusion para-
meter at any time. The results obtained have been
compared with the modelling data available in the lit-
erature, and are found to be in close agreement.

Keywords: Diffusion, facilitated, living tissues, muscle
fibre, oxygen concentration.

PROBLEMS in engineering, computation and applied sci-
ences are increasingly addressed using sophisticated
techniques of mathematics. A number of interdisciplinary
applied mathematics research work is going on all over the
world. The present study describes mathematical model
with solution to describe the oxygen diffusion process in
living tissues. It is of use to applied mathematicians, bio-
engineers and physiologists interested in theoretical ap-
proach to the subject. Physiologists such as Huxley' and
Hodgkin® had taken a keen interest towards the mathe-
matical approach to solve physiological problems.

The moving boundary is an essential feature of the pre-
sent problem. The movement of boundary depends on the
rate of absorption of oxygen by the medium. A number of
research papers® ! dealing with moving boundary value
problem are available in the literature due to its applica-
tions in various problems such as heat flow, diffusion
process, pollution control, soil mechanics, decision theory,
ete.

There are various reactions that are catalysed by en-
zymes which do not themselves change, but efficiently
speed up the biological reaction®. It is often the case in
reaction diffusion systems that the reactants in enzymatic
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reactions are free to diffuse into the medium. Therefore,
one has to keep track of both reaction and diffusion. The
subject is useful to understand the facilitated diffusion
process®®. Facilitated oxygen diffusion occurs when the
flux of oxygen passing through the muscle fibre is ampli-
fied (catalysed) by the reaction taking place in the diffusing
medium. In the muscle fibre, oxygen binds with myoglobin
to produce oxymyoglobin. The transport of free oxygen is
more in comparison to oxygen released by oxymyoglobin.
However, in the case of oxygen debt, transport of oxygen
is greatly enhanced in the presence of myoglobin. It hap-
pens because of the fact that molecular weight of my-
oglobin (16,890) is much greater than that of oxygen
(32).

Muscle fibre uses oxygen even during the rest state of
the body, because of the biological process taking place
in the muscles. The consumption of ATP (adenosine
triphosphate) by the medium requires metabolism of sugar,
which consumes oxygen. Further, the oxygen at the exte-
rior of the muscle cell must penetrate to the centre of the
cell to prevent oxygen deficiency there (a case of oxygen
debt). The problem of diffusion of oxygen was solved by
Crank and Gupta'® by considering the rate of absorption
as constant. Marquina and Martinez'?, and Martinez et al."”
extended the work of Crank and Gupta" by considering
the rate of absorption as a function of distance from the
outer surface for inhomogeneous media.

The present work is concerned with the diffusion of
oxygen into the tissues, where the effect of biological re-
action (myoglobin) is taken into account. The presence of
oxymyoglobin protects the muscle at the farthest distance
from oxygen debt by releasing the stored oxygen. In fact,
the steady process is governed by a fourth-order nonlin-
ear differential equation, which exists in real life.
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All other terms are defined subsequently.

The models of Crank and Gupta"® and Martinez et al."”
can be obtained as particular cases. Free and bounded
concentration of oxygen is obtained at any point in the
medium as a function of rate of absorption of oxygen and
facilitated diffusion parameter using the numerical method
at any time. Explicit finite-difference scheme'*>*’ derived
from forward difference, central difference and Lagrange
method is used to find the concentration of oxygen at the
surface, intermediate points (between the surface and centre
of the cylinder) and at the centre respectively.

Formulation of the problem

Consider the muscle fibre as a long circular cylinder of
radius ¢ where diffusion takes place in the radial direc-
tion only. Let the oxygen concentration at the surface
(boundary) be kept constant s, and distribution of the
chemical species maintained radially symmetrical.

When oxygen [O,] passes through the muscles, it re-
acts with myoglobin [Mb] to produce oxymyoblobin
[MbO,]

+

0, + Mb -——k——‘ MbO-, 3)

where k" and k& are rate constants in the forward and
backward direction respectively.

The law of mass action for uptake of oxygen f into
oxymyoglobin is given by

f=—kc+k'se, @

where s, e and ¢ are the concentrations of oxygen, myo-
globin and oxymyoglobin respectively, at a point » from
the centre of the cylinder at any time 7.

The governing diffusion equations for oxygen, oxymyo-
globin and myoglobin are respectively given by:

Os 10( Os
g—Dsyg[rgj—g—f: )
Oc 10( oc
5-@75[?5]+ﬁ ©)
Oe 10( Oe
5_D976_r[r6_rj_f’ )

where g is the constant consumption rate of oxygen per
unit volume in the medium, and D,, D, and D, are the dif-
fusion constants of oxygen, oxymyglobin and myoglobin
respectively.
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The boundary conditions to solve the differential equa-
tions are:

dc Oe
Atr= =5, L=0 %<0 8
rEa, s=s, =0 =0, = ®)

Os dc Oe
Atr—O, 5—0, 5—0,5—0. (9)

Total myoglobin ¢( in the medium is conserved by the re-
action. Therefore,

etc=eg (10)
The non-dimensionalized variables are:
k* T
o= S,U:L,V:i’y__’_:eok# (an
- € € t

Introducing the non-dimensional variables, eqs (5)—(7)
and (10) reduce to:

oo d*c 1d6c
ﬁ_ 1[6)/—24_;@]_7-"_([]_0[/)’ (12)
D
where & = ——=—, y = g
a’k’e, egk™
2
6_06_U282 6_U+16_U -U+oV, (13)
k oT &t Yoy
D ,
where &, = 26 , k:k—.
a‘k” Kkt
2
ICUSI (AU S Iy s (14)
k or o vy
where g, = —%—.
3 azk,
And
U+V=1. (15)

The boundary conditions with respect to new variables
are as follows:

o= o, a—U:O a—V:O.

At y=1, ;
% %

(16)
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And
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Since molecular weight and structure of oxymyoglobin
and myoglobin are similar, the constants & and &; are ap-
proximately taken to be the same. Hence eq. (14) is su-
perfluous. Therefore, the only differential equations to be
solved are eqs (12) and (13).

Steady state

Oxygen diffuses into the muscle fibre freely, where some
of the oxygen is absorbed by the medium, thereby being
removed by the diffusion process. The concentration of
oxygen at the surface of the medium is maintained con-
stant. The first phase of the problem continues until steady
state is reached, where the oxygen concentration does not
change any further with time.

Thus the differential equations governing the steady-
state process are:

’c 10c
O 9 U -y =0, (18)
I[Gyz y@y]
2
P AR L S ) (19)
&t Yoy

The explicit steady-state solution derived from Keener
and Sneyd”® for concentration distribution in the muscle
fibre, using eqs (16) and (17) is:

1
oy, 1) = 3{7’1()’2 “D+oy+pU, —-1-p

2_ 1 2
N \/(h(y D+oy+ply—1=p) +| 20,

An(° =D+ (o + pUY)

where o7 and Uj are free and bounded oxygen concentra-
tion at the surface respectively, while p=g/g and
n = yde are the facilitated parameter and oxygen con-
sumption parameter respectively.

Oxygen debt occurs when o becomes zero, while mar-
ginal oxygen debt occurs when total oxygen concentra-
tion falls to zero. The oxygen concentration (critical
oxXygen concentration o) at the boundary just enough to
prevent oxygen debt at the centre is given by:

oyt p

=n- 21

1+o0o,
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FExtinction state

The supply of oxygen is cut-off by sealing the surfaces,
so that no further oxygen passes in or out. The medium
continues to consume the available oxygen present. Sub-
sequently, oxygen debt occurs at the centre of the muscles
and after sometime the boundary of zero concentration
recedes towards the sealed surface.

The governing differential equations of extinction state
are:

2_2281[66273+%%]_7+(1+6)U_6’ (22)

%Og—;] =5 [6&;—? + %%]] —(+o) +o, (23)
The boundary conditions are:

Aty =1, %:0, %:O, =0 24

Aty =0, %:0, %:O, 7 =0. (25)

The free and bounded oxygen concentration o and U ob-
tained in steady state can be taken as the initial distribu-
tion of oxygen for the solution of extinction state.

c,0)=0, U@,0)=U, attime 7 =0. (20)
The objective of the problem is to trace the movement of
the boundary and determine the distribution of oxygen in
the medium as a function of time and distance. The change
in concentration of oxygen and movement of the boundary
point in different time stages are found to be different.
Hence, different methods have been proposed for different
time stages by earlier researchers, like integral, finite dif-
ference, Laplace transformation, etc. Crank and Gupta'’
suggested an appropriate numerical method to find the
concentration of oxygen at any time at the surface, inter-
mediate points (between the surface and centre of the cyl-
inder) and at the centre of the cylinder.

Method of solution: Numerical method

The continuous absorption of oxygen by the medium re-
sults in oxygen debt at the centre of the muscle fibre in
extinction state. Subsequently, the boundary of zero con-
centration of oxygen moves towards the sealed surface.
Abrupt sealing of the surface causes discontinuity in the
derivative boundary condition and hence numerical methods
based on the finite differences are liable to give inaccu-
rate solution in the surface neighbourhood for short times.
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Several numerical methods have been proposed earlier to
obtain the approximate solution. Douglas and Gallie* in-
troduced a method of variable time-step, keeping the size
of the space mesh fixed. Ehlrich** employed implicit for-
mula at the intermediate points and Taylor’s expansions
near the moving boundary in both time and space
directions. Crank” suggested a Lagrange interpolation
formula near the moving boundary to obtain the concen-
tration.

In the present analysis, the concentrations at the inter-
mediate points have been calculated using explicit finite-
difference formula, as suggested by Crank®’. The location
of the moving point is determined by the Taylor’s series.
The whole region, 0 <y <1 is subdivided into M intervals
each of width &y, such that y,=rdy, where 0 <r<M
Moy =1).

Let the concentration at each of the grid points at the jth
time level be known. The position of the moving bound-
ary at that time is somewhere in the rth interval between
y,1 and y, given by yo=@-Do&v+p e, 0<p <1
along the radial direction. Figure 1 shows the boundary
point yo.

Then the concentration at the (j + 1)th time level can
be calculated using the explicit formula:

Oi41 = Oy + 61

« (05, —0y)( 2
dy

% —+1j—7+(1+ai].)Uij —al-]}, 27)

while at the other intermediate points the explicit formula
becomes

[0} ..

ij+1 = ij
g (O =20, +0,4;) (T, —Ti;)
+5t| — +
dy dy 2y,
7+ A+ o), — 0 } . (28)
D e e e R [ SRR >
Non-Oxygen medium . Oxygen medium
dy pldy
] | GEETITEL | R >
j+l1 i
Time y=0 ptlsy =1
level
-2 -1 T
Figure 1. Movement of boundary separating oxygen and non-oxygen
media.
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Concentrations in the neighbourhood of the boundary as
suggested by Crank and Gupta'® using the appropriate
finite-difference replacement leads to the following
equations.

14

Free oxygen concentration o

2 T I T I
0.0 0.2 0.4 0.6 0.8 1.0
Radial distance y

Figure 2. Free oxygen distribution in steady state. Free oxygen con-
centration in steady state for oxygen consumption y = 5.0: , and
7 =10.00 —memememen . Key symbol p=0.0: ees; p=50: mmm, and
p=10.0: AAA.

Total oxygen concentration o

| T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Radial distance y

Figure 3. Total oxygen distribution in steady state. Total oxygen
concentration in steady state for oxygen consumption y = 5.0: 2
and 1 =10.0: --emememem . Key symbol p=10.0: ese; p=5.0: mmm, and
p=10.0: AAA.
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When the boundary does not move within the specified
degree of accuracy,

—r+d+o)U; -0y |,

(29)
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Oxygen consumption rate vy,

Figure 4. Oxygen concentration o for p=35: and p=10: ———, in
steady state. Key symbol y=0.0: ese and y=0.5: mE H.
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Figure 5. Oxygen concentration o vs time 7 at the centre y = 0.0 as a

function of consumption rate =50 —— »n =100 ————;
n =15 —— Key symbol p=35: ess; p=10: mmmE, and p=15:
AAA

CURRENT SCIENCE, VOL. 95, NO. 6, 25 SEPTEMBER 2008

When the boundary starts moving,
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Vi
where = 2011
Ps dy

05 . . : : . - - -

8.5
b
c 75
2
s
'E 6.5 7 G N W G G
[ - — = — = — = — = — = — 8 — % — 8 — B — 4
g —— o — - — o — - — o — 0o — 0 — o — 0 — 4
S 5.5
c
[0
2
> 4.5
@]

3'5 7,_._ -— .

25 T T T T

0 2 4 6 8 10
Time T

Figure 6. Oxygen concentration ¢ vs time 7' at midpoint y=0.5 as a
function of consumption rate 1 = 5.0: , n=100: ————; n=135:
——— Key symbol p=5:eee; p=10: mEE, and p=15: AAA.
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Figure 7. Oxygen concentration ¢ vs time 7" at the surface y = 1.0 as
a function of consumption rate p =35.0: , n =100 ————;
7n=15 ——— Key symbol p=35: eee; p=10: mEm, and p=15:
AAA.
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Similarly, the bound oxygen concentration at the sealed
surface, intermediate points and in the neighbourhood of
the moving boundary becomes respectively,

Ul.].+1 = Ul.].
k gz(U. 17 -U)N( 2
+61— S I =t 1| -+ o )Uy + 0y |,
e, dy dy
(1)
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(@)
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Time T

Figure 8. Release of bounded oxygen by oxymyoglobin when
free oxygen is reduced to a low level for 1 = 16.0 and p=5.217 at the
centre.
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Figure 9. Free oxygen concentration as a function of consumption
rate y at time 7= 5.0 and p=5.217. Key symbol y = 1.0: eee; 3y=0.5:
mEE and y=0.0: AAA.
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Uy = Uy + 61—
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Figure 10. Position of moving boundary with respect to time for
faciliated diffusion parameter p= 5.215 and consumption rate parame-

ter = 18.0.
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Figure 11. Comparison of oxygen concentration (e) with Crank and
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7=0.10: ---------
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When the boundary does not move,

k
Uy = Uy 51
U.,. U,
|22 T T qhoU, oy, | (33)
dydyl p, +1  p, e
20,
where p, =
dy

When the boundary starts moving,

U _,. U,
U, =U, L o B e TR Vi
¢ ¢ e|dvldvlp, +1  p,

Uiy = U, 5,
M) - +0)U; + al-]} , (34)
Vi
\,2Ui—lj
where p, = ——.

dy

Numerical results

Free and bounded oxygen concentration eqs (22) and (23)
are solved by explicit finite-difference method for various
values of reaction diffusion parameters, such as facili-
tated diffusion parameter p (=0, 5, 10), rate of consump-
tion parameter 1 (=0, 5, 10) at different times 7. Time
T =0 corresponds to the result of steady state. Total my-
oglobin e, diffusion constants g, & and rate constants K
and %k are taken as 2.8 x 107 mol/em®, 2.3 x 107

14 /
12 ] //
o y %
é 10 / /
s S
g 87 # J
8 / /
s 67 $
2 / /
(_c‘: 4 - /0/ ’/o/
o g
/‘/,/0/'
I T
0 5 10 15 20

Oxygen consumption rate 7,

Figure 12. Comparison of critical oxygen concentration (M) with that
of Keener and Sneyd? for p = 0: cp=5 ——and p=10: =rmreeem )
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1.2 x 107, 2.4 x 10" ¢cm’/mol s and 65/s respectively, to
compute the entire results.

Results and discussion

Oxygen concentration has been obtained for the facili-
tated oxygen diffusion process for different values of faci-
litated parameter p, oxygen consumption parameter 4 at
any time 7, and at any point in the medium. Finite-
difference numerical techniques have been utilized to
find the concentration of oxygen at the centre, intermedi-
ate points and on the surface of the medium. The work
presented here analyses how myoglobin facilitates the
oxygen diffusion process and prevents oxygen debt in the
muscle fibre. The combined effect of diffusion and myo-
globin in oxygen consumption is presented in Figures 2—
13. Figure 2 presents the graph of free oxygen concentra-
tion vs radius vector y for facilitated oxygen distribution
at steady state for facilitated parameter p= 0.0, 5.0 and
10.0, and oxygen consumption parameter  =5.0 and
10.0. Figure 2 shows that oxygen concentration gradually
decreases from the surface to the centre of the muscle,
keeping other parameter values fixed. The concentration of
oxygen is greater for higher values of p. The role of pis
found to increase the concentration of oxygen at all points
in the medium. Thus presence of myoglobin reduces the
chances of occurrence of oxygen debt. But reverse is the
case with the increase of . Figure 3 shows the total oxy-
gen concentration due to free and bounded oxygen re-
leased by oxymyoglobin for the same parameter values as
in Figure 2. Figure 4 presents the graph of free oxygen
concentration vs consumption rate parameter y at y = 0.0
and 0.5 for facilitated parameter o= 5.0 and 10.0. The

1.01

1.00 ¢

0.99

0.98

0.97 p

0.96

Normalized oxygen concentration o/c*

0.95 T T T T T T T T T
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Grid size 8y

Figure 13. Convergence of normalized oxygen concentration o/ c*
with grid size &y for » =2.0 and p=35.217 at the origin. ¢*, Con-
centration obtained at &y = 0.01.
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Table 1.

Free oxygen concentration in facilitated oxygen diffusion in extinction state as a function of radius y and time 7'

p=50and p =50

Ty 0.0 0.1 0.2 0.3 0.4
0.0 8.113 8.160 8.302 8.538 8.871
2.0 8.106 8.156 8.296 8.533 8.865
4.0 8.101 8.152 8.292 8.528 8.860
6.0 8.097 8.149 8.289 8.524 8.856
8.0 8.094 8.146 8.285 8.521 8.852
10.0 8.090 8.143 8.283 8.518 8.849

p=100and =5.0

T 0.0 0.1 0.2 0.3 0.4

0.0 8.282 8.327 8.462 8.687 9.004
2.0 8.276 8.323 8.457 8.682 8.999
4.0 8.271 8.319 8.452 8.677 8.994
6.0 8.266 8.316 8.449 8.673 8.990
8.0 8.263 8.313 8.445 8.670 8.986
10.0 8.260 8.310 8.443 8.666 8.983

p=5.0and » =10.0

T 0.0 0.1 0.2 0.3 0.4

0.00 3.641 3.723 3.970 4.391 4.998
2.00 3.635 3.720 3.966 4.387 4.993
4.00 3.632 3.718 3.964 4384 4.990
6.00 3.629 3.717 3.962 4.382 4.988
8.00 3.627 3.716 3.961 4.381 4.986
10.00 3.626 3.715 3.960 4.379 4.984

p=10.0and 5 =10.0

T 0.0 0.1 0.2 0.3 0.4

0.00 4.148 4.220 4.442 4.822 5.374
2.00 4.141 4.218 4.438 4.818 5.370
4.00 4.137 4.215 4.436 4.815 5.367
6.00 4.135 4.214 4.434 4.813 5.364
8.00 4.133 4.212 4.432 4811 5.362
10.00 4.131 4211 4.431 4.810 5.361

0.5 0.6 0.7 0.8 0.9 1.0
9.299 9.826 10.451 11.175 11.999 12.923
9.294 9.820 10.445 11.169 11.992 12.833
9.289 9.815 10.440 11.164 11.982 12.760
9.285 9.811 10.435 11.159 11.971 12.698
9.281 9.807 10.431 11.154 11.960 12.644
9.277 9.803 10.427 11.149 11.947 12.595

0.5 0.6 0.7 0.8 0.9 1.0
9.415 9.921 10.523 11.223 12.023 12.923
9.409 9.915 10.517 11.217 12.016 12.835
9.404 9.910 10.512 11.212 12.007 12.764
9.400 9.906 10.508 11.207 11.996 12.703
9.396 9.902 10.503 11.203 11.984 12.650
9.393 9.898 10.500 11.198 11.972 12.603

0.5 0.6 0.7 0.8 0.9 1.0
5.799 6.805 8.018 9.443 11.078 12.923
5.795 6.800 8.014 9.438 11.071 12.749
5.792 6.797 8.010 9.433 11.058 12.609
5.789 6.793 8.006 9.429 11.041 12.491
5.787 6.791 8.003 9.425 11.023 12.387
5.784 6.788 8.000 9.420 11.003 12.294

0.5 0.6 0.7 0.8 0.9 1.0
6.111 7.047 8.193 9.552 11.129 12.923
6.107 7.044 8.189 9.548 11.123 12.754
6.104 7.040 8.185 9.544 11.111 12.617
6.101 7.038 8.182 9.540 11.095 12.502
6.099 7.035 8.179 9.536 11.077 12.402
6.097 7.033 8.177 9.532 11.058 12.312

oxygen concentration decreases with increase of y. The
decrease of oxygen concentration causes oxygen debt at
the centre of the muscle, which can be avoided for higher
values of p. Figures 5-7 show the graph of oxygen con-
centration vs time 7 at p=5, 10 and 15 in extinction state
for different values of 1 (=5.0, 10.0, 15.0) at the centre,
intermediate points and surface of the muscle fibre re-
spectively. It can be seen from Figures 5-7 that the con-
centration of oxygen not only decreases with increase in
7, but also with the increase in 7T, keeping other parameters
fixed. The rate of decrease of oxygen concentration is
more at points towards the surface. The same can be seen
from Table 1. When free oxygen concentration drops,
oxygen is released by the myoglobin. Thus even bound
oxygen diffuses slowly compared to free oxygen; the
quantity of bound oxygen is high (Figure 8). But in the
absence of external oxygen supply, oxygen debt occurs
after a certain time, keeping all other parameters fixed
(Figure 9). Subsequently, boundary of zero concentration
recedes towards the sealed surface (Figure 10). Consump-
tion of oxygen is faster at the end of the process.

758

Figure 11 compares oxygen concentration with the re-
sult obtained by Crank and Gupta'®, when rate of con-
sumption per unit volume is constant in the one-dimension
Cartesian coordinate system, in the absence of oxygen
uptake function f. The obtained results are in good agree-
ment with those of Crank and Gupta'’. The model pre-
sented by Martinez et al.'> can be obtained as a special
case of the present model, by taking rate of consumption
per unit volume as a function of distance (i.e. \/distance)
in the one-dimension Cartesian coordinate system, in the
absence of oxygen uptake function f A comparative
study with different models presented by Martinez et
al’®, Crank and Gupta'® and Hansen and Hougaard' is
shown in Table 2. Figure 12 compares the critical oxygen
concentration at the surface vs oxygen consumption rate
parameter p for facilitated parameter p=0, 5 and 10
with the result of Keener and Sneyd®. Figure 12 shows
that as the consumption rate increases, the critical oxygen
concentration at the surface has to be increased to prevent
oxygen debt, but reverse is the case for higher values of
p. There is a linear increase of critical oxygen concen-
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Table 2. Comparative study of free oxygen concentration in extinction state as a function of time 7 at the surface
Matinez et al. Present Crank and Present Hansen and Present

Time T model"’ study Gupta model" study Hougaard model"’ study
0.04 0.2759 0.2758 0.2759 0.2743 0.2743 0.2741
0.10 0.1449 0.1445 0.1449 0.1432 0.1432 0.1430
0.18 0.0235 0.0238 0.0235 0.0213 0.0218 0.0217
0.19 0.0109 0.0111 0.0109 0.0082 0.0090 0.0091

tration in the absence of facilitated myoglobin, but the in-
crease is parabolic in its presence. Concentration of oxy-
gen has been obtained for grid size Sy = 0.05 and 0.1. It
has been observed that there is no change in the result up
to three places of decimal. A convergence of results with
respect to grid size is also presented in Figure 13.

Conclusion

Thus the boundary value problem has wide applications
in applied sciences, engineering, metallurgy, soil mechan-
ics, decision theory, etc. The problem is of immediate in-
terest in medical research concerning uptake of oxygen in
the tissues. The present problem analyses the combined
effect of diffusion and myoglobin on oxygen diffusion
process. Presence of myoglobin prevents the deficiency
of oxygen in the muscle fibre. The results obtained are in
good agreement with the modelling results available in
the literature.
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