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Effects of assimilation of Argo temperature profiles in
an Ocean General Circulation Model (OGCM) are
studied in the tropical Indian Ocean. Two assimilation
experiments have been performed during the first five
months of 2004. In the first one, monthly averaged
Argo profiles have been assimilated using nudging tech-
nique and in the second, Cressman technique has been
used for assimilating daily Argo profiles. The differ-
ences in the isothermal layer depth (ILD), depth of the
20°C isotherm (D20) and sea surface temperature
(SST) have been examined. The impact of assimilation
has also been assessed using independent observations
from one of the Indian Ocean Triton buoys. Errors in
SST at the Triton buoy location are reduced by 37 and
16% respectively, in the two experiments. ILD and
D20 show significant improvement in terms of error
reduction in both the experiments, implying improve-
ment in the mixed layer and the thermocline region.
The impact of assimilation using Cressman technique
is more on ILD and D20 as is evident from the coeffi-
cient of determination. This is because in the first
experiment monthly averaged data have been assimi-
lated leading to a comparatively poor representation
of the high frequency variability of the parameters.
Temperatures at the surface, 50 and 100 m depths
during the forecast period (June—August 2004) have
also been compared with Triton buoy observations.
Also, SST in the forecast phase has been compared
with available National Institute of Ocean Technology
buoy measurements.

Keywords: Argo floats, data assimilation, Ocean Gen-
eral Circulation Model, temperature profiles.

DATA assimilation is one of the frontier areas of research
in atmospheric and oceanic sciences. Incomplete model
physics and inevitable errors in the initial and boundary
conditions generally lead to divergence of model trajecto-
ries from reality, which results in substantial forecast error.
This forecast error can be corrected to a certain extent using
various techniques of data assimilation'. There are three
broad objectives of data assimilation: (1) Improvement of
model parameterization of sub-grid scale processes; (ii)
preparation of self-consistent ocean state, and (iii) genera-
tion of reasonably accurate initial conditions for the fore-
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cast models. Comprehensive reviews of data assimilation
are readily available!™. Studies related to this topic can
be broadly divided into two classes. The first class is
known as sequential data assimilation. Starting from
some initial condition, the model solution is sequentially
updated whenever measurements are available, using a
combination of model and observations according to some
prescribed mathematical recipes known as blending,
nudging, optimal interpolation and the more sophisticated
approach of Kalman filter, etc. The second class of non-
sequential methods is known by the general name of
variational methods, which can be time-independent like
3D Var as well as time-dependent like 4-D Var using ad-
joint equations. However, these sophisticated approaches
of 4-D Var and Kalman filter suffer from the drawback of
high computational cost as well as other drawbacks like
the use of model equations as hard constraints in the case
of 4-D Var with adjoint equations (of course, the weak
constraint formulation allows for weakening this constraint)
and use of Kalman filter for nonlinear atmospheric and
oceanic models, although it is known that the Kalman filter
1s a strictly optimal filter only for the class of linear models.
In fact, this is the primary reason why researchers in re-
cent times are inclined towards the use of ensemble Kalman
filter"®, which is applicable for nonlinear models. This
method exploits the use of ensembles to estimate the model
error covariance matrix. The ensemble Kalman filter is also
applicable to (i.e. is optimal for) linear models, but is
much easier to apply to nonlinear models than the previous
extension of Kalman filter, like the extended Kalman filter.

Historically, ocean modelling has suffered from lack of
surface and sub-surface observations, although in recent
times there has been enormous number of surface obser-
vations by satellites, like the observations of sea surface
temperature (SST), sea surface winds (SSW) and sea sur-
face heights (SSH). The large spatial and temporal cover-
age of satellites provides a unique dataset. The huge
dataset of SST and SSH has been successfully assimilated
by many researchers in the past in ocean models of various
levels of complexity, while the dataset of SSW has been
used for driving these models. In more recent times, a large
number of sub-surface temperature and salinity profiles
have become available with the launch of Argo floats’. Tt
is needless to mention here that this dataset provides a
unique opportunity to ocean modellers for generating re-
alistic sub-surface analysis using data assimilation. There
have been attempts to use these data in ocean data assimi-
lation systems®’, where it has been shown that Argo data
can significantly improve the ocean model simulations in
the region of the middle Pacific. There are more recent
studies'*!! related to this topic.

The present study provides an example of Argo tem-
perature profile assimilation using two simple techniques
in an Ocean General Circulation Model (OGCM). The
main emphasis of the study is the generation of accurate
four-dimensional ocean states.
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Figure 1.

In this study Argo profiles for the period January—May
2004 have been used. Only those Argo profiles have been
retained which are available from the surface to depths
beyond 500 m. Several standard quality checks were
applied to filter the spurious profiles from the database.
After these checks, there were ~10,000 temperature pro-
files available for assimilation for the period January—
May 2004. Figure 1 shows a map of all the Argo observa-
tions available for the study period. Assimilation of these
profiles in the OGCM was carried out using two different
techniques, which are discussed below.

In the nudging technique, the model is slowly nudged
(relaxed) towards observations at each time step via a
Newtonian damping term in the prognostic equation of
the relevant variable (in this case, temperature):

o v, 5) = AT =Ty, M)

where the model variable T (temperature) is nudged
towards a reference value or observation 74, and
AT, u, v, s) represents the remaining terms like advection,
diffusion and source. A is a depth-dependent nudging co-
efficient given by

dz

4 = 26,400 > days (s)

2)
In this method correction to the model temperature is
made at every time-step and hence the observations need
to be interpolated in time. Moreover, nudging has to be
carried out at all the model grid points. Since the Argo
data are not dense and not available on daily timescale,
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Distribution of Argo profiles assimilated in the OGCM during January—May 2004.

monthly averaged Argo profiles have been used with
Levitus climatology filled in the data gaps. The spatial
fields have been smoothened with nine-point averaging,
so that there are no sharp discontinuities. The lowest model
depth is 5500 m. Argo observations are not available at
this depth. Therefore, once again Levitus climatology has
been used to extend the observed Argo profile up to
5500 m depth and the discontinuities are removed by
simple three-point smoothing. Thus a database of T
was made on a monthly basis and then the model was
slowly nudged towards this database using eq. (1).

In the Cressman technique'?, the model state is set
equal to the observed values in the vicinity of available
observations and to an arbitrary state (say, climatology or
a previous forecast) otherwise. If we represent a back-
ground state (which can be model forecast, climatology,
etc.) by x, and a set of »n observations of the same para-
meter by y(i), where i=1,2,... ,n, then the analysed
field of the parameter x, using Cressman technique at
each model grid point j can be represented as:

PRUCISIORENGY
5 () = % () + E— : &
D owi, j)
i=1

where

R? - d?,
w(i, j) = max {0, ——=¢. (4)
R +di)]-
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Figure 2.

Here d;; is the distance between the model grid point j
and observation point i and x,(i) is the background value
interpolated to the observation point. R is the influence
radius which is user-defined. w(i,;) is a measure of
weight which decreases with increasing d;;, becoming
zeroif d;; = R.

In our case the temperature field of the OGCM has been
used as the background field and keeping R as 100 km the
analysed field of temperature was generated using the
above technique with Argo observations. This analysis
technique was applied to each level of the model. Once
the analysed field for a particular day (say, 1 January
2004, in our case) is generated, then using that as the initial
condition the model is integrated for a day. The output
temperature fields are then again considered as background
fields and the next day’s Argo observations (wherever
available) are assimilated into it to generate analysed
fields. This procedure is carried out for January—May 2004,

The model used in the present study is a modified ver-
sion of the Modular Ocean Model version 3.1 (MOM-3)
from GFDL/NOAA, set up for the global domain, exclud-
ing the polar regions (80°S—80°N), with variable horizon-
tal resolution varying from 0.5° in the Indian Ocean to 2°
in the rest of the oceans. There are 38 levels in the verti-
cal with 16 in the upper 110 m. The bottom topography is
based on 1/12° by 1/12° resolution data from the US Na-
tional Geophysical Data Centre. A wind-dependent drag
coefficient was used in the model. The model was spun
up from the rest for about 20 years using climatological
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Spatial differences of SST (°C), ILD (m) and D20 (m) between EXP1 and control run (left), as well as EXP2 and control run (right).

winds and restoring boundary conditions for SST and sea
surface salinity (SSS). After this, the model was further
run with the actual daily winds and flux data for 1996—
2003 without any restoring. The freshwater flux used was
from daily climatological dataset. A suite of three ex-
periments have been performed for 2004. Using the initial
conditions generated by model integration from 1996 to
2003, the model is integrated for 2004 using QuikSCAT
scatterometer winds and heat flux parameters (net short-
wave, net longwave, air temperature and specific humid-
ity) from NCEP/NCAR Reanalysis. Monthly climatology
of river discharge data have been used. In addition, daily
data of diffuse attenuation coefficients derived from
SeaWIFS have also been used. Latent and sensible heat
terms were computed using model SST. Hence SST and
SSS were not restored. This run was designated as control
run (CNTRL). In the second run, monthly averaged Argo
data were assimilated using nudging technique (EXP1)
and in the third run (EXP2), Cressman technique was
used to assimilate the Argo data on daily timescale. Fore-
ing parameters were kept the same in all the three runs.
Figure 2 shows the differences in SST (J5SST), ILD
(0ILD) and D20 (6D20) between CNTRL and the two
assimilation experiments, EXP1 and EXP2 for April. ILD
is defined as the depth at which the temperature is lower
by 1°C from the surface value. The left panel shows differ-
ences between EXP1 and CNTRL, while the right panel
shows differences between EXP2 and CNTRL. One obvi-
ous inference that can be made is the large values of
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control run, EXP1, EXP2 and observations at TRITON buoy location (during assimilation phase).

SSST in EXP1 compared to EXP2, possibly because EXP1
runs are constrained by Levitus profiles. Similar behav-
iour can be observed in SILD and 6D20 also. The impact
of assimilation is more in the deeper layers, which is re-
flected in the difference maps of ILD and D20. In EXP1,
ILD has become shallower than the control run in the
eastern Indian Ocean. In the western Arabian Sea, both
EXP1 and EXP2 have shown a deepening in the D20 with
respect to the control run. However, these are qualitative
differences. The exact impact of the assimilation can be
inferred by comparing the simulations with measurements.

An independent dataset consisting of continuous tem-
perature profiles from Triton buoy located in the Eastern
Equatorial Indian Ocean region (90°E and 1.5°S) has
been used to assess the relative performance of the two
experiments. These observations have been linearly inter-
polated to the model depths for comparison. Although the
assimilation of temperature will affect other model vari-
ables (like currents and salinity) too, the analysis has been
carried out only for temperature and some derived para-
meters.

Time evolution of SST, ILD and D20 in the control
run, EXP1, EXP2 and observations is shown in Figure 3.
Model-simulated surface temperature in all the three runs
shows an underestimation of ~1°. This could be due to
the thermodynamic imbalance caused between scattero-
meter winds and other air—sea exchange parameters from
NCEP. However, the model picks up the patterns well.
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This underestimation in surface temperature is reduced
with time in the two experimental runs. In EXP1 (nudg-
ing scheme) the surface temperature becomes closer to
the observation as time progresses, whereas in EXP2 the
effect is seen as and when the Argo observations closer to
the TRITON buoy are getting assimilated. This is so be-
cause in EXP1 assimilation is performed at each time-
step of the model, and in case the Argo data are absent, it
is the Levitus climatology which affects the model. How-
ever, in EXP2 it is only when Argo data are available that
the impact is seen.

Significant impact of assimilation on the isothermal
layer depth simulation can be seen in EXPI, whereas
EXP2 is close to the control run, except for the time when
Argo observations are available. In EXP1, nudging of
monthly data has smoothened the high frequency vari-
ability of the model, which otherwise was in better
agreement with the observations, except for events that
resulted in ILD shoaling (April-May). After April, ILD
from EXP1 remains consistently underestimated. In
EXP2, the ILD patterns have slightly improved with even
high fluctuations being captured. However, EXP2 also
failed to simulate the shallow ILD during April due to
non-availability of Argo observations during that time.

D20, which was well simulated in the control run, was
further improved using the Cressman technique for assimi-
lation. High period oscillations, which were missing in
the control run were induced and further maintained even
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Figure 4. Scatter plots of observed and model-simulated SST (°C), ILD (m) and D20 (m) for control run, EXP1 and EXP2 at the TRITON buoy

location (during assimilation phase).

when Argo data for assimilation were not available.
Nudging technique of assimilation had completely failed
in simulating the correct variability of D20. In fact, it had
made D20 simulations worse than the control run. This is
again because of the use of monthly average Argo data in
EXP1, which lacked daily variability of the observations.
The depth around D20 experiences maximum temperature
variability (figure not shown), and therefore the perform-
ance of the nudging scheme is worst in that region. It was
also observed that the standard deviation of the temperature
profile from EXP2 is in close agreement with the obser-
vations.

Figure 4 shows the scatter plots of SST, ILD and D20
between the simulations and observations. It can be seen
that after assimilation the root mean square error (RMSE)
reduces by 37 and 16% in EXP1 and EXP2 respectively.
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However, the coefficient of determination (in both the
experimental runs) is reduced compared with the control
run, with EXP2 (34%) performing marginally better than
EXP1 (31%). Reduction in RMSE of similar order can
also be seen in the ILD simulations. In EXP2, the coeffi-
cient of determination is 0.77, compared to 0.79 and 0.66
in the control run and EXP1 respectively. As in the case
of time-series plot, the maximum impact of assimilation
is seen in D20 simulations. It can be seen that in EXP2
the scatter has become organized and the coefficient of
determination of D20 with respect to observations is 0.94.
RMSE for D20 increased in EXP1 and the coefficient of
determination has decreased to 0.84 compared to 0.88 in
the control run, which implies that assimilation of monthly
data restricts the model from simulating low frequency
variability.
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Figure S. Time series of observed and model-simulated SST (°C), and temperatures at 50 and 100 m depth in the forecast phase

during control and assimilation runs.

Having observed the effect of assimilation on SST,
ILD and D20 during the assimilation phase, it would be
instructive to assess the model performance during the
forecast period (June—August 2004). In Figure 5, we
show the temperatures at the surface, 50 and 100 m depths
at the Triton buoy location. Observations from the buoy
are also shown in Figure 5. At all depths, the correlation
coefficients in the forecast phase after nudging (0.7 at the
surface, 0.3 at 50 m and 0.22 at 100 m as against 0.87 at
the surface, 0.6 at 50 m and 0.96 at 100 m for control
run) are much less than the control run simulations. On
the other hand, the Cressman technique has improved the
simulations at 50 m (R=0.73) and at 100 m (0.98).
Maximum impact of assimilation in the forecast phase
(after Cressman assimilation) is observed at 100 m. RMSE
of 2.2°C in the control run decreased to 1.9°C in this
case.

We had examined the impact of assimilation in the
forecast run at a single point in the eastern equatorial
Indian Ocean (Triton buoy location). Here we evaluate
the impact of assimilation on SST at one of the National
Institute of Technology buoy locations (14°N, 83°E) in
the forecast phase (June—August 2004). The correlation
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increased from 0.41 in the control run to 0.92 in the fore-
cast after nudging, and to 0.95 in the forecast after
Cressman assimilation. Similarly, RMSE reduced from
0.34°C to 0.28°C in the case of nudging and 0.16°C in the
case of Cressman assimilation. These facts suggest that in
the forecast phase the impact of Cressman technique of
assimilation is more than the nudging technique. The
analysis was restricted to only one buoy, as there was no
other buoy with continuous SST observations in this period.

Sub-surface temperature profiles available from Argo
floats have been assimilated in an OGCM. Two experi-
ments differing in the nature of their assimilation schemes
were performed. The first experiment (EXP1) involves
the use of nudging technique, while in the other experiment
(EXP2) Cressman technique has been used. In EXPI
monthly averaged Argo profiles have been assimilated,
whereas in EXP2 daily data have been assimilated. Im-
pact of assimilation in general and the relative perform-
ance of the two schemes in particular, have been assessed
using an Eastern Equatorial Indian Ocean buoy data (Tri-
ton). While the RMSE in SST has been reduced after as-
similation in both the experiments, the variability in SST
became less than the explained variance in the control
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run. Subsurface features like ILD and D20 show signifi-
cant improvement in terms of error reduction, implying
improvement in the mixed layer and thermocline region.
EXP2 scores over EXP1 in terms of the coefficient of de-
termination of ILD and D20. This is because EXP1 is
handicapped by the use of monthly averaged data. In future
it will be interesting to investigate the impact of Argo
profile assimilation on model-simulated currents and sea-
level fields. Also advanced techniques of data assimila-
tion (like ensemble Kalman filter) could be applied for
better performance.
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Encouraged by the potential prospects of oil/gas and
gas hydrates, exploration activities in the marine envi-
ronment have increased extensively. These seismic ex-
periments however, result in contaminating the signal
by interference noise which is generated due to neigh-
bouring seismic vessels working in the same area. This
noise in seismic reflection data may be substantially
minimized by seismic interference noise attenuation
technique. This technique utilizes frequency—receiver—
shot (f~x—y) prediction filters to estimate the noise.
The predicted filters can be applied in the f~x domain
to remove noisy frequencies in seismic records. We
have performed this exercise on a multi-channel seismic
reflection dataset and the results indicate that noise
from different sources has been successfully eliminated
from the recorded datasets. Our study suggests that
the f~x—y interference attenuation mechanism preserves
the primary signal and eliminates the seismic interfer-
ence in an efficient manner.

Keywords: Noise attenuation techniques, prediction fil-
ters, seismic interference.

WHEN more than one seismic vessel acquires data in a
common area, the energy generated by sources of neigh-
bouring ships causes interference in the signal recorded
by other ships, which is known as seismic interference
noise (SI). This is recorded along with the desired reflec-
tion data. This interference can be easily identified in the
seismic section. Within a single trace, the interference
consists of isolated, short-duration events that can hardly
be recognized. However, across numerous traces, a char-
acteristic trend develops, which is different from the trends
of the real reflection characteristic, representing real geo-
logic configuration. For reflection times greater than the
water bottom time, this high-energy noise overrides weak
reflections and is destructive to many pre-stack processes
such as, surface multiple prediction, pre-stack migration
and AVO trends. For seismic reservoir monitoring, inter-
ference noise from other seismic operations can cause ei-
ther delay in data acquisition due to time sharing, or
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