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The combine harvesting technology which has become
common in the rice-wheat system in India leaves be-
hind large quantities of straw in the field for open
residue burning, and Punjab is one such region where
this is regularly happening. This becomes a source for
the emission of trace gases, resulting in perturbations
to regional atmospheric chemistry. The study attempts
to estimate district-wise burned area from agriculture
residue burning. The feasibility of using low resolu-
tion (MODIS) and moderate resolution (AWiFS) satel-
lite data for estimation of burned areas is shown. It
utilizes thermal channels of MODIS and knowledge-
based approach for AWiFS data for burned area es-
timation. A hybrid contextual test-fire detection and
tentative-fire detection algorithm for satellite thermal
images has been followed to identify the fire pixels over
the region. The algorithm essentially treats fire pixels
as anomalies in images and can be considered a spe-
cial case of the more general clutter or background
suppression problem. It utilizes the local background
around a potential fire pixel, and discriminates fire
pixels and avoids the false alarm. It incorporates the
statistical properties of individual bands and requires
the manual setting of multiple thresholds. Also, a deci-
sion-tree classification based on See5 algorithm is ap-
plied to AWiFS data. When combined with image
classification using a machine learning decision tree
(Seeb) classification, it gives high accuracy. The study
compares the estimated burned area over the region
using the two algorithms.

Keywords: Burned patches, decision-tree classifier,
knowledge-based classification, thermal band.

BiomAss burning is a major source of many atmospheric
particulates and trace gases, which have a major impact
on climate; it also affects human health causing respira-
tory problems. It is recognized as a significant global source
of emissions, contributing as much as 40% of gross
carbon dioxide and 38% of tropospheric ozone'. It has
significant impact on the atmospheric chemistry and bio-
geochemical cycles’, radiative energy balance and cli-
mate™®. Smoke particles from biomass burning have direct
radiative impact by scattering and absorbing shortwave
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1185



RESEARCH COMMUNICATIONS

radiation and indirect radiative impact by serving as
cloud-condensation nuclei and changing the cloud micro-
physical and optical properties’. Studies suggest that bio-
mass burning has increased on a global scale over the last
100 years and computer calculations indicate that a hotter
earth resulting from global warming will lead to more
frequent and larger fires®.

Combine harvesting technologies, which have become
common in the rice—wheat system (RWS) in India, leave
behind large quantities of straw in the field for open
burning of residues. Punjab has about 2,647,000 ha under
paddy cultivation that yields roughly 100 million tonnes
of rice straw and about three-fourth of crop residue
amounting to 70—80 million tonnes of rice is disposed-off
by burning’. The easy option left for proper management
of left-over straw for farmers is to burn it in the field as
the decomposition of residues takes a long time. Such burn-
ing results in perturbations to the regional atmospheric
chemistry due to emissions of trace species like CO,, CO,
CH,, N,O, NO,, NMHCs, aerosols and is also a health
hazard to local inhabitants. The emission of CH,, CO,
N,O and NO, has been estimated to be about 110, 2306, 2
and 84 Gg respectively, in 2000 from rice and wheat
straw burning in India®. Residue burning also causes nu-
trient and resource loss, and reduces total N and C in the
topsoil layer, thus calling for improvement in harvesting
technologies and sustainable management of the RWS’.

In studies related to biomass burning, satellite data
owing to wide swath, good temporal and spectral resolu-
tion, find importance in detecting and monitoring of fire
in a quantitative and qualitative manner. There are two
main monitoring strategies which are analysed — detection
of burned areas at fine, moderate spatial resolution and
detection of active fires at coarse spatial resolution at
high temporal frequency. This study attempts at the use
of high temporal satellite (coarse spatial resolution) Mod-
erate Resolution Imaging Spectroradiometer (MODIS)

and moderate resolution (low temporal resolution) Ad-
vanced Wide Field sensor (AWIiFS) data in estimating
burned areas. The thermal channels of day and night-time
MODIS data and knowledge-based approach for AWiFS
data have been utilized for deriving burned areas.

Punjab, with a geographical area of 50,362 sq. km, forms
a part of the Indus plain. It lies between 29°33'-32°31'N
lat. and 73°53'-76°55'E long., bounded by Pakistan to its
west, Jammu and Kashmir to its north, Himachal Pradesh
to its east and northeast, Haryana to its east and southeast,
and Rajasthan to its west. Most of Punjab is a gently un-
dulating plain. The Shiwalik hills rise in the northeast. To
its south extend narrow foothills that end in the plains
further below (Figure 1).

Punjab is one of the smallest states in India, represent-
ing 1.6% of its geographical area and 2.6% of its cropped
area. Agriculture occupies the most prominent place in the
State’s economy. Known as the granary of India, Punjab
has made enormous contributions to the national pool of
foodgrains, i.e. around 70% of wheat and 50% of rice. As
against an all-India average of 51%, Punjab has 85% of
its area under cultivation. The state, on an average, ac-
counts for 23% of wheat, 14% of cotton and 10% of rice
production of the whole country. It is only in the districts
of Ropar and Hoshiarpur that the cultivated area is less
than 60% of the total. It is in these districts that consider-
able land is covered by the Shiwalik hills and the beds of
seasonal streams that cannot be brought under cultivation.
However this growth of agriculture is associated with
high input in terms of fertilizers, pesticides, water, etc.

The State has witnessed a paradigm shift in its cropping
pattern. From multi-cropped practice, it has shifted to a
mono-cropped one. Area under high-input intensive crops
like wheat, paddy and cotton is increasing at the cost
of traditional low-inputs crops. Important soil-enriching
crops like gram and pigeonpea have declined significantly,
and area under maize, millet and groundnuts has
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%

Figure 1.
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given way to rice during Kharif season and that from gram,
repressed/mustard and barley has given way to wheat
during Rabi season. At present, about 95% of the total
foodgrain production in Punjab is from rice and wheat’.
The study attempts to utilize moderate spatial resolu-
tion AWIiFS and low resolution MODIS data in estimating
the burned pixels. Data of AWiFS having spatial resolution
of 56 m on-board IRS-P6 of 15 May 2005 and day and
night-time MODIS data on-board Terra of 15 May 2005
have been used. AWIFS data are used for extracting burned
areas using knowledge-based classification approach,
whereas thermal bands of MODIS data are used for ex-
tracting the potential burned pixels over the study area.
The fire-detection algorithm'® uses brightness tempera-
ture derived from MODIS 4 ym and 11 pm channels (de-
noted by T, and T, respectively). The MODIS instrument
has two channels (in the 4 pm wavelength) number 21
(saturation at nearly 500 K) and number 22 (saturation at
nearly 331 K), both of which are used in the detection al-
gorithm. Since the low saturation channel 22 is less noisy
and has a smaller quantization error, T is derived from this
channel, whenever possible. However, when channel 22
saturates and has missing data, it is replaced with the
high-saturation channel to derive T,. T, is computed from
the 11 um channel (channel 31), which saturates at ap-
proximately 400 K for the terra MODIS and 340 K for
aqua MODIS'. The 12 um channel (no. 32) is used for
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Flow chart for extracting potential burned pixels using MODIS data.

cloud masking brightness temperature and is denoted by
T1,. The 250 m resolution red and near-infrared channels
aggregate to 1 km are used to reject false alarm and mask
cloud. These reflectances are denoted by g5 and pg g re-
spectively. Figure 2 shows the algorithm for extracting
burned patches using MODIS data.

The purpose of the detection algorithm is to identify fire
pixels. The algorithm examines each pixel of the MODIS
swath and ultimately assigns it to one of the following
classes: missing data, cloud, water, non-fire, fire, or un-
known. Pixels lacking valid data are immediately classified
as missing data and excluded from further consideration.

Under identification of potential fire pixels, a prelimi-
nary classification is used to eliminate obvious non-fire
pixels. The pixels that remain are considered in subse-
quent tests to determine if they do in fact contain an ac-
tive fire. A daytime pixel is identified as a potential fire
pixel if T, >310K, AT> 10K and pyg6 < 0.3, where AT =
T, — Ty,. For night-time pixels, the reflective test is omit-
ted and the T, thresholds reduce to 305 K. Pixels failing
these preliminary tests are immediately classified as non-
fire pixels. There are two logical paths through which fire
pixels can be identified. The first consists of a simple ab-
solute threshold test. This threshold must be set suffi-
ciently high so that it is triggered only by unambiguous
fire pixels, i.e. those with little chance of being a false
alarm.
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The absolute threshold criterion remains identical to the
one employed in the original algorithm'':

T, > 360 K (320 K at night). (1)

In the next phase of the algorithm'®, which is performed
regardless of the outcome of the absolute threshold test,
an attempt is made to use the neighbouring pixels to es-
timate the radiometric signal of the potential fire pixel in
the absence of fire. Valid neighbouring pixels in a win-
dow centred on the potential fire pixel are identified and
used to estimate a background value. Within this window,
valid pixels are defined as those that (a) contain usable
observations, (b) are located on land, (c) are not cloud-
contaminated, and (d) are not background fire pixels.
Background fire pixels are in turn defined as those having
T,>325K and AT> 20K for daytime observations, or
T, > 310 K and AT > 10 K for nighttime observations.

If the background characterization is successful, a series
of contextual threshold tests are used to perform relative
fire detection. These look for the characteristic signature
of an active fire in which both the 4 um brightness tem-
perature (T,) and the 4 and 11 pum brightness temperature
difference (AT) depart substantially from that of the non-
fire background. Relative thresholds are adjusted based
on the natural variability of the background. The tests are:

AT > AT + 3.56r, (2)
AT > AT + 6K, 3)
Ty>Ty+ 36, 4)
T > Ty + 6, — 4k (5)

Among these conditions, the first three isolate fire pixels
from the non-fire background. The factor 3.5 appearing in
test (2) is larger than the corresponding factor of 3 in test
(4) to help adjust for partial correlation between the 4 and
11 um observations. Condition (5) which is restricted to
daytime pixels, is primarily used to reject small connec-
tive-cloud pixels that can appear warm at 4 um (due to
reflected sunlight) and cool in the 11 pm thermal chan-
nel. It can also help to reduce coastal fire alarms that
sometimes occur when cooler-water pixels are unknow-
ingly included in the background window. Any test based
on ¢, however, risks rejecting very large fires since
these will increase the 11 pm background variability sub-
stantially. In this position one can tentatively identify
pixels containing active fires. For night-time fires, this
will in fact be an unambiguous, final identification. For
daytime pixels, three additional steps are used to help
eliminate false alarms caused by sun glint, hot desert sur-
faces, and coasts or shorelines.

A daytime pixel is tentatively classified as a fire pixel if:

{test (1) is true} or,
{test (2) —test (4)} are true and {test (5) is true}.

Otherwise it is classified as fire pixels.
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A night-time candidate fire pixel is definitely classified
as a fire pixel if:

{test (1) is true} or, {test (2) —test (4) is true}.

Otherwise it is classified as non-fire.

For daytime and night-time pixels for which the back-
ground characterization had failed, i.e. an insufficient
number of valid neighbouring pixels were identified, only
test (1) is applied in this step. If not satisfied, the pixel is
classified as unknown, indicating that the algorithm was
not able to unambiguously render a decision.

Figure 3 shows a flowchart for extracting burned
patches using AWIiFS data. To extract burned areas, the
See5 algorithm'?, which is basically a decision-tree clas-
sifier, has been used. The advantage of the decision-tree
classifier over traditional statistical classifiers is its sim-
plicity, ability to handle missing and noisy data, and non-
parametric nature.

Let us now consider the decision tree algorithm.

Step 1: Let T be the set of training instances.

Step 2:  Choose an attribute that best differentiates the
instances in T.

Step 3: Create a tree node whose value is the chosen
attribute.

e (Create child links from this node, where each link
represents a unique value for the chosen attribute.

o Use the child link values to further subdivide the in-
stances into subclasses.

AWIFS data

[ AOI of different classes using visual inlerpretalion]

v

[ Knowledge based approach using See5.0 ]

v

Convert those AOI in ASCII file

.

[ Building rules for classification using See5.0 software ]

¥

[ Run into knowledge engineer in ERDAS Imagine ]

Districts mask of punjab

Burned area statistics

Figure 3. Flow chart for extracting burnt pixels using AWiFS data.
AOI, area of interest; ASCII, American Standard Code for Information
Interchange; ERDAS, Earth Resources Data Analysis System.
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Figure 4. Fire patches extracted from (a) MODIS and (b) AWIFS data of 15 May 2005.

Step 4:  For each subclass created in step 3:

o If the instances in the subclass satisfy predefined cri-
teria or if the set of remaining attribute choices for
this path is null, specify the classification for new in-
stances following this decision path.

e If the subclass does not satisfy the criteria and there is
at least one attribute to further subdivide the path of
the tree, let T be the current set of subclass instances
and return to step 2.

It is obvious that if the rules are not complete after tracing
through the decision tree, some pixels will remain unclas-
sified. Therefore, the efficiency and performance of this
approach is strongly affected by tree structure and choice
of features selected for training.

Once the classification rules are generated using the
decision-tree classifier, they can serve as a knowledge
base. This knowledge base can be used for classification
of the satellite images. Three approaches were followed
to use the extracted rules for the classification. In first
approach, classification rules were used directly with the
knowledge-based classifier to classify the image. In the
second approach prior probability of the class distribution
was used to classify the image. A new method was proposed
to calculate the prior probability from the already classi-
fied image using the first approach. The third approach
uses the post-classification sorting method to reclassify
pixels which were misclassified during maximum likeli-
hood classification. The AWiFS image was classified
with extracted classification rules using the knowledge-
based classifier in ERDAS. The extracted classification
rules served as the knowledge base to classify the image.

CURRENT SCIENCE, VOL. 94, NO. 9, 10 MAY 2008

In the present study an improved, contextual, active
fire-detection algorithm for the MODIS data has been ap-
plied. The probability of detection is strongly dependent
upon the temperature and area of the fire being observed.
Figure 4 a shows the burned area derived using the day
and night MODIS datasets. The ideal condition is when the
fire is observed at a fairly homogeneous surface, the
background window contains no fire and the scene is free
of clouds and heavy smoke. High thresholds have been
used to identify potential fire pixels. Fire shows little or
no contrast against the hot, bright surface that can satu-
rate the mid-infrared channel even in the absence of a
fire. The high saturation of the MODIS band 21, how-
ever, allows detection to proceed largely unhampered.

Figure 5 shows the estimated district-wise potential
burned areas over Punjab on 15 May 2005, obtained from
MODIS data and the total burned area is found to be
around 954.71 sq. km. From the results it can be seen that
Gurdaspur, Amritsar, Faridkot and Firozpur districts are
severely affected by agriculture residue burning. Bhatinda,
Ludhiana, Sangrur, Kapurthala and Hoshiarpur are mod-
erately affected, and Rupnagar, Patiala and Jhalandhar
are least affected.

Figure 4 b shows the estimated burned areas using AWiFS
data obtained from knowledge-based classification ap-
proach using See5 algorithm. Figure 6 shows the district-
wise burned area distribution and the estimated total burned
area is found to be around 4315.35 sq. km. Among these,
Amritsar has more burned area (673.99 sq. km) followed
by Jhalandhar, Ludhiana, Firozpur and Patiala districts
and Rupnagar was the least affected (41.36 sq. km). The
difference in the district-wise estimates of burned areas
is due to the use of different spatial-resolution sen-

1189



RESEARCH COMMUNICATIONS

B Gurchanprar
8 Hosharpur
® halandhar
1 Knpurholn
w Ludhiang

| Patala

0 Repragar
0 Sangur

Areain (5g Km)

Districts
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Figure 6. District-wise burned areas over the region using AWiFS
data of 15 May 2005.

sors. The hybrid contextual fire detection algorithm helps
in the use of thermal bands in monitoring and detection of
burnt areas on a regular interval (high temporal fre-
quency) and optical bands from low temporal satellite data
to estimate the burned area. The estimates obtained using
AWIFS data are the cumulative burned areas generated
using the knowledge-based classification, whereas
using MODIS dataset the estimates show potential fire
pixels.

Mapping of burned biomass is a difficult task, but re-
mote-sensing tools are prove to be promising. The study
demonstrates the use and importance of the knowledge-
based classification approach using VNIR channels and
contextual fire-detection algorithm using thermal chan-
nels for identifying and deriving burned areas. It shows
the feasibility of using high and low temporal satellite
datasets in estimating burned areas. Due to the absence of
any field data or other statistics, the satellite-derived dis-
trict-wise burned areas could not be validated. The differ-
ence in the burned area maybe due to the fact that from
AWIFS dataset commutative burned area statistics is gen-
erated using knowledge-based classification up to 135th
Julian day, whereas in the case of MODIS burned area sta-
tistics shows potential fire pixels of 135th Julian day.
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Open field burning of crop residue leads to emission of
trace gases like CH,, CO, N,O, NO,, other hydrocarbons
and also emission of large amount of particulates com-
posed of a wide variety of organic and inorganic species.
From such studies, the spatial extent of burned areas es-
timated from satellite data would help estimate the
amount of trace-gas emissions.
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