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Recent studies have shown an increasing thrust on the
development of algorithms based on a lattice frame-
work. Efficient pruning of the search space is an im-
portant factor which determines the performance of
such algorithms. In this communication, we present
certain lattice theoretical concepts relevant to our work
and propose two novel hybrid strategies for enumerat-
ing frequent itemsets. Inherent lattice properties along
with intelligent heuristics make our algorithms out-
perform similar algorithms by reducing the search
space by almest 50%. We prove theoretically and ex-
perimentally that intelligent heuristics applied opti-
mally in alternating the top-down and bottom-up phases
results in substantial reduction of the search space.
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FREQUENT itemset mining is one of the fundamental prob-
lems in data mining, having varied applications in areas
like inductive databases, market basket analysis and stock
market predictions, to name a few.

The frequent set counting (FSC) problem as it is known
consists of finding all the sets of items which occur in at
least S% of the transactions of a database D, where each
transaction is a variable length collection of items from a
set I. S is also referred to as minimum support. Itemsets
which have frequency higher than the minimum support
are termed frequent. The complexity of the FSC problem
is compounded by the exponential growth of its search
space, whose dimension d in the worst case is given by
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where t.,, is the maximum transaction lengthl. Based on
the minimum support threshold download closure property
has been used in many of the previous approaches®™ to
reduce the search space. But still, a number of computa-
tions go wasted before infrequent combinations are known.
Our proposed strategies make optimal use of the upward
and downward closure properties. This, along with optimal

heuristics help in pruning the search space considerably,
as we show in the later sections.
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Existing algorithms can be broadly classified as apriori-
based™®, pattern-growth based® and lattice-based strate-
gies®’. Such strategies have been used either for deter-
mining frequent itemsets, maximal frequent itemsets or
closed frequent itemsets. In addition, a number of hybrid
approaches which combine several interesting features from
different algorithms have been proposed®%°.

In the work of Lucchese et al.’, the hybrid nature stems
from the ability to switch between a horizontal and vertical
database format and the choice of optimized data struc-
tures. Uno et al.” use diffsets or horizontal format based
on the density of the input. The hybrid approach of Uno
et al.® is based on the choice of data structures appropriate
to the problem. Here we compare the proposed strategies
to the hybrid approach by Zaki’, since we use a combination
of bottom-up and top-down procedures to optimally
prune the search space. We show theoretically and ex-
perimentally that our strategies score over the Maxeclat,
which combines a depth first and breadth first search and
the Eclat, which uses a pure bottom-up approach. Our
techniques use heuristics to cleverly alternate between
top-down and bottom-up phases and therefore differ from
the previous approaches. The proposed strategies are also
different from the Pincer search', in that, we use appro-
priate heuristics to optimally alternate the bottom-up and
top-down phases. The objective of the top-down and bottom-
up phases also differs from the Pincer search. We give a
comparison of our work with the Eclat alone, since it has
been established that the Eclat out-performs the Pincer
search and is one of the best-perfoming algorithms in its
category.

The association mining task, introduced in Agrawal et
al.? can be stated as follows: Given a set of transactions,
where each transaction is a set of items, an association
rule is an expression X = Y, where X and Y are sets of items.
The meaning of such a rule is that transactions in the data-
base which contain the items in X also tend to contain the
items in Y. Two measures which determine the most inter-
esting factors of such a rule are support and confidence.
For a given rule expressed as

Bread = Cheese [support = 5%, confidence = 90%],

the measure ‘support = 5%’ indicates that 5% of all trans-
actions under consideration shows that bread and cheese are
purchased together. ‘Confidence = 90%’ indicates that 90%
of the customers who purchased bread also purchased cheese.
The association rule mining task is a two-step process.

(1) Find all frequent itemsets. This is both computation
and I/O intensive. Given m items, there can be potentially
2™ frequent itemsets. It constitutes an area where signifi-
cant research findings have been reported.

(2) Generating confident rules —Rules of the form
X/Y = Y where Y — X are generated for all frequent item-
sets obtained in step I, provided they satisfy the minimum
confidence.
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Our focus is on the generation of frequent itemsets.
Table 1 shows a sample database with six transactions.
The frequent itemsets generated at minimum support 50%
is shown in Table 2.

The number in brackets indicates the number of trans-
actions in which the itemset occurs. We call an itemset as
frequent if it satisfies the minimum support. A frequent
itemset is termed maximal frequent if it is not a subset of
any other frequent set for a given minimum support. In
our example {A, B, C, D} is a maximal frequent itemset
at minimum support set to 50%. The proposed hybrid
strategies aim at finding out the maximal frequent sets
and generating its subsets.

Now we review some of the definitions from lattice
and representation theory''. We propose lemmas I and II
which form the basis of our itemset pruning strategy.

Definition I: Let P be a set. A partial order on P is a bi-
nary relation <, such that for all X, Y, Z € P, the relation is:
(1) Reflexive: X <X. (2) Anti-symmetric: X <Y and
Y <X, implies X = Y. (3) Transitive X <Y and Y< Z, im-
plies X < Z. The set P with relation < is called an ordered
set.

Definition II: Let P be a non-empty ordered set. (1) If
XvYand X AY exist for all X, Y € P, then P is called a
lattice. (2) If v S and A S exist for all S < P, then P is
called a complete lattice.

For a set I, given the ordered set P(IT), the power set of
T'is a complete lattice in which join and meet are given by
union and intersection respectively.

ViAlie I} = A,

iel

AT eI} = (A.

iel
Table 1. Sample database
Transactions Items
1 A B,C,D
2 A B
3 A B,C,D,E
4 A B,C,D
5 A CE
6 A B, C
Table 2. Frequent itemsets
Frequent itemsets Support (%) (minimum support = 50)
A 100 (6)
B, C,AC, AB 83 (5)
ABC, BC 67 (4)
BCD, D, ACD, ABCD, AD, ABD 50 (3)
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The top element of P(I) and the bottom element of P(I)
are given by T=T and L ={ } respectively. For any
L < P(I), L is called a lattice of sets if it is closed under
finite unions and intersections, i.e. (L, ©) is a lattice with
partial order specified® by the subset relation <,
XvY=XuYand X A Y.

The power set lattice for our sample database I = {A, B,
C, D, E} shown in Figure 1, constitutes the search space.
Maximal frequent sets are indicated by dark circle. Fre-
quent itemsets are grey circles, while infrequent itemsets
are plain circle. It has been observed that the set of all
frequent itemsets forms a meet semi lattice. For any fre-
quent itemsets X and Y, X m Y is also frequent. The infre-
quent itemsets form a join semi lattice.

Definition III: Let P be an ordered set and Q < P. (1) Q
is a down-set (decreasing set and order ideal) if, whenever
xe Q,yePandy<x, we have y € Q. (2) Dually, Q is
an up-set (increasing set and order filter) if, whenever
xe Q,ye Pandy>x, wehavey € Q.

Given an arbitrary subset Q of P and x € P, we define

1Q={y e P/(3x € Q)y < x} and
TQ={y e PI(Ax € Qy2x},
Ix={y e Ply<x}and Tx = {y € P/y > x}.

Lemma 1: For a maximal frequent itemset Q < P, all
down-sets Q1 = 1 Q; Q1 < P will also be frequent.

This is a consequence of the above definition. Fast enu-
meration of the frequent itemsets is possible in the bot-
tom-up phase once the first maximal frequent set is detected.
Examining only the potentially frequent itemsets avoids
unnecessary Tid list intersections.

Lemma 2: For a minimal infrequent set Q — P all up-sets
01="T0Q; Q1 c P will be infrequent.

The top-down phase detects the minimal infrequent
sets. In the power set lattice shown in Figure 1 AE is in-
frequent and it is observed that all up-sets Q1 = TQ leading
to the top element are also infrequent. Both the algorithms
alternate the phases in the search heuristically based on
the detection of down-sets and up-sets.

Here we propose two algorithms, Hybrid Miner I and
Hybrid Miner II, which operate on a vertical database for-
mat shown in Figure 2. Accommodating the power set
lattice in primary memory is not possible for large datasets
since the lattice search space grows exponentially with
the items. We use a recursive prefix-based decomposition
of the lattice. The tid lists for the items are generated in
the first scan of the database. Support is computed by in-
tersection of the tid list for the items constituting the
itemset.

For example, in order to find the support of an item set
ABC, we first perform an intersection of the lists for A, B
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Figure 1.

Figure 2. Tid lists for items in sample database.

Level 1

Level 2

Level 3

Level 4

Level 5

Figure 3.

Equivalence class for item A.

and B, C. The cardinality of the set AB m BC then gives the
support for ABC.

In the bottom-up phase, intermediate computations are
temporarily stored and used in the support computation of
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Power set lattice P(I).

the next node at the same level. Figure 3 shows the equi-
valence class corresponding to item A. Figure 4a and b
gives the pseudocode for Hybrid Miner I and Hybrid
Miner II respectively.

In the case of Hybrid Miner I, the search starts with a
bottom-up phase to identify the maximal frequent item sets.
@ indicates the length of the common prefix for decom-
posing the power set lattice into sub-lattices. It starts at
level n — the highest level in a sub-lattice and performs a
breadth first search moving to the next lower level if no
maximal frequent itemsets are found at the current level.
Once the first maximal frequent itemsets at a level are
found, we determine items missing from the maximal
frequent sets and start a top-down phase that lists the
minimal length infrequent sets. The heuristic is gained
from the items missing in the maximal frequent sets gen-
erated at that level. Faster search is possible because we
examine nodes which contain the missing items only.
This phase starts at level 2. If no infrequent sets are found
at level 2, we go to the next higher level. The top-down
phase ends when minimal infrequent sets are detected. The
bottom-up phase then resumes to list the other maximal
frequent itemsets and frequent items sets after eliminating
the nodes containing infrequent itemsets generated in the
top-down phase. The computationally intensive support
task is thus reduced by cleverly alternating the bottom-up
and top-down phases. The process of generating the fre-
quent itemsets is then a simple task of enumerating the
subsets of all maximal frequent sets. We also make a
check to avoid duplicates. The heuristic here is based on
the assumption that the items missing from the maximal
frequent itemsets are likely to lead to infrequent combina-
tions. The top-down phase thus examines only potentially
infrequent nodes.
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@

/*Bottom-up phase discovers the maximal frequent itemsets,
top-down phase discovers the minimal infrequent itemsets*/
Begin
Set flag = false;
for all sub-lattices S induced by & do
Mfreq = ¢;
Bottom-up (S):
While there are unmarked nodes
Repeat until flag = true
for R ¢ Mfreq
L(R) = n{L(A)/A; € S§}; mark node;
if o(R) = min_supp then
Mftreq = Mfreq U R; flag = true;
top-down (S):
level = 2 /* starts for 2-length itemsets */
infreq = ¢;
Repeat for all atoms not in Mfreq
v Aje Swithj>ido
L(R) = L(A) ~ L(A):;
if o(R) < min_supp then
infreq = infreq W R; break;
else
level = level + 1; continue;
Repeat Bottom-up for nodes not containing infrequent
subsets; /* generate freq itemsets */
Max length

freq = ‘Ul A c Mfreq A A; ¢ infreq;
i=

end.

/*Top-down phase identifies minimal length infrequent itemsets.
Bottom-up phase examines potential nodes only*/
Begin
for all sub lattices S induced by 6 do
/* atoms sorted on ascending order of support */
top-down (S):
begin
level = 2; infreq = ¢; flag = false;
Repeat for all nodes at level while flag = false
vAje Swithj>ido
L(R) = L(A) N L(A);
if o(R) < min_supp then infreq = infreq W R;
if lastnode and flag = true then break;
else level =level + 1;
end; /*Top-down(S)*/
Bottom-up (S):
While there are unmarked nodes
begin
Mfreq = ¢; level = n;
for R¢ Mfreq and R ¢ Nfreq
L(R) = n{L(A) A; € S}; mark node;
if o(R) > min_supp then MFreq = Mfreq U R;
else level = level — 1; continue;
end;
Max length

freq= ‘Ul A cMfreq A A @ infreq};
i=

end.

100

Figure 4. Pseudocode for (@) Hybrid Miner I and (b) Hybrid Miner II.
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Hybrid Miner 1T starts with a top-down phase to enu-
merate the minimal length infrequent itemsets. This
method examines the nodes in the ascending order of
supports. The bottom-up phase starts when minimal length
infrequent itemsets are found in an equivalence class. In
this phase, the maximal frequent itemsets are generated
by only examining nodes not containing the minimal in-
frequent itemsets. Generating the remaining frequent
itemsets is as described for Hybrid Miner I. It is a varia-
tion of the Hybrid Miner I, in that it attempts to avoid the
intensive computation of supports which are encountered
for the candidate nodes in the bottom-up phase in the initial
stage itself. Hence efficient subset pruning is incorporated
at the start of the algorithm itself. Both the strategies
make use of a sentinel routine to take care of any nodes
not covered in either of the phases. We now highlight some
of the strengths of our algorithms. (i) Significant reduc-
tion in I/O and memory. (ii) The sorting of itemsets at
second level imposes an implicit ordering on the tree.
Each child is attached to the parent with the highest sup-
port. Redundancy and overlapping amongst classes is
avoided. (iii) On comparison with the approaches in®, it is
found that the number of tid list intersections and nodes
examined is reduced by optimally using heuristics to al-
ternate between the top-down and bottom-up phases.

We further draw a theoretical comparison with the best-
performing Maxeclat proposed in Zaki®. We manually
trace the Hybrid Miner I, Hybrid Miner II and Maxeclat
for the power set lattice shown in Figure 1. Hybrid Miner
I examines only ten nodes to generate the maximal fre-
quent set {A, B, C, D} Hybrid Miner II examines 12
nodes, while Maxeclat examines 18 nodes for generating
the maximal frequent itemset. Our methods thus achieve
a search space reduction of almost 50% over the Maxe-
clat. The savings in computation time and overhead are
significant for large databases.

The experiments were carried out on a Pentium-IV ma-
chine with 512 MB RAM, running at 1500 MHz. Syn-
thetic databases were generated using the Linux version
of the IBM dataset generator. The data mimic transac-
tions in a retailing environment. The performance of our
algorithms is illustrated for the databases T10I8D400K
and T20I18D400K. T, I and D indicate the average trans-
action size, size of a maximal potentially frequent itemset
and the number of transactions respectively. The execu-
tion times of the proposed algorithms in comparison to
Eclat are illustrated in Figure 5. In the case of artificial
datasets, Hybrid Miner I performs better than Hybrid
Miner II and Eclat for lower supports, whereas Hybrid
Miner IT performs better for higher supports. For the
Mushroom database which is a dense real database, Hy-
brid Miner I performs better. Figure 5 also shows the tid
list-intersections. Both Hybrid Miner I and Hybrid Miner
1T perform about half the number of intersections compa-
red to Maxeclat. We give a comparison of the tid list
intersections only with Maxeclat, since it is a hybrid
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strategy. Further reduction in time may be possible using
more efficient and compressed data structures.

Our experiments have proved that Hybrid Miner I and
Hybrid Miner 1T are efficient search strategies. Both the
methods benefit from reduced computations and incor-
porate excellent pruning that rapidly reduces the search
space. Further, both the upward and downward closure
properties have been efficiently and optimally utilized.
The objective has been to optimize the search for frequent
itemsets by applying appropriate heuristics. Further opti-
mizations in terms of storage are being experimented.
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