MEETING REPORT

Seminar on male infertility*

In our overpopulated country, the presence of infertility, its increasing trend and its clinical management come as a surprise to some. The healthcare system in India is characterized by multiple systems of medicine, mixed ownership patterns and different kinds of delivery structures. People with infertility problems should have immediate access to an integrated multidisciplinary service that provides efficient and accurate assessment of the clinical situation. This should lead to individualized management founded on evidence-based principles of care. It should be reinforced by access to adequate information, appropriate counseling services, and ethical and cultural considerations. At all times, the infertile couple should be treated with respect, and supported in making informed choices about their care and management.

India is emerging as the most favoured destination for medical tourism. This is because of its infrastructure and technology, which are on par with those in USA, UK and Europe. India has some of the best hospitals and low-cost treatment centres in the world, providing the best facilities. To establish India in a leading position in the global infertility treatment, a holistic approach to the management of infertility is a must. To look at the advances in infertility diagnosis and treatment in ayurveda, allopathy, unani-tibb, siddha and homeopathy, a national seminar on male infertility was organized recently. There were 160 participants from different institutes of India.

Shrishailesh Amrakhed (J. N. Medical College, Belgaum) in his inaugural address spoke on current understanding of the male reproductive system, endocrinology and spermatogenesis. Vaidya Pawan-

---

*tA report on ’‘VRISHYA 07 – A National Seminar on Male Infertility’’ held at Shri B.M.K. Ayurveda Mahavidyalaya and Hospital, Belgaum during 26-27 October 2007.
Malaria control: New avenues

Pankaj Ghate, Milind Patole and Yogesh S. Shouche

Malaria is an acute infectious disease caused by the parasites, Plasmodium spp., and spread by the vector, the female anopheles mosquito. Today over 3.2 billion people in 107 countries/territories are living under the threat of malaria. It is spreading worldwide due to the emergence and spread of drug-resistant strains. This poses major health and economic problems for the population living in endemic areas as well as travellers. If no new control measures are developed, the number of malaria deaths is projected to double in the next 20 years.

Therefore, there is an urgent need for developing new strategies to control malaria. Several new drugs are under development, which are likely to be used in combinations to slow the spread of resistance, but the high cost of treatments would make these drugs difficult to sustain. Malaria vaccine, RTS, S/AS02, has shown promise in endemic areas and will shortly enter further trials. Other vaccines are being studied in clinical trials, but it will probably be at least ten years before a malaria vaccine is ready for widespread use. The other approach involves control through vector, and in the last few years there have been several developments in this field.

Riehle et al. looked into natural resistance of mosquitoes to Plasmodium. According to them, Anopheles gambiae population in a West African malaria transmission zone has naturally occurring genetic loci that control mosquito infection with the human malaria parasite, Plasmodium falciparum. This genetic resistance can segregate as a simple Mendelian trait. They have sampled the isofemale pedigrees from wild mosquitoes as female A. gambiae mate only once and each mosquito pedigree is the progeny of a single pair cross that has occurred in nature. The strongest Plasmodium resistance loci cluster in a small region of chromosome 2L and each locus accounts for at least 89% of parasite-free mosquitoes in independent pedigrees. All the clustered loci form a genomic Plasmodium-resistance island and are responsible for most of the genetic variation for malaria parasite infection of mosquitoes.