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A new image segmentation method based on finite
truncated Gaussian mixture model has been proposed.
The truncated Gaussian distribution includes several
of the skewed and asymmetric distributions as par-
ticular cases with a finite range. It also includes the
Gaussian distribution as a limiting case. We used the
Estimation Maximization algorithm to estimate the
model parameters of the image data and the number
of mixture components was estimated using hierarchi-
cal clustering algorithm. This algorithm was also util-
ized for developing the initial estimates of the EM
algorithm. Segmentation was carried out by clustering
each pixel into the appropriate component according
to the maximum likelihood estimation criteria. The
advantage of our method lies in its efficiency on ini-
tialization of the model parameters and segmenting
images in a totally unsupervised manner. Experimen-
tal results show that this segmentation method can
provide better results than the other methods.

Keywords: EM algorithm, image segmentation, image
quality metrics, truncated Gaussian mixture distribution.

IMAGE segmentation is widely used in many applications.
With segmentation it is possible to identify the regions of
interest and objects which are highly useful to subsequent
image analysis or image animation. For example, many
communication tasks require high comprehensive ratio to
save network resources. The common method to realize
the higher comprehensive ratio is to discriminate the ob-
jects for the image and compress the necessary objects
for the user. This makes image segmentation useful for
providing the necessary information and image retrieval'.

Image segmentation is defined as the process of divid-
ing the image into different regions, such that each region
is homogeneous. For intensity image segmentation there
exist three popular approaches, namely (i) histogram
analysis technique, (ii) region growing and (iii) edge de-
tection. A more comprehensive discussion on image seg-
mentation has been presented®™. There does not exist a
single generic algorithm that works for all applications.

*For correspondence. (e-mail: Ksracau@yahoo.co.in)

CURRENT SCIENCE, VOL. 93, NO. 4, 25 AUGUST 2007

Target applications vary in the necessary degree of pre-
cession, efficiency and intensity information required
from image segmentation. For applications like content-
based image retrieval and video compression, the ability
to preserve the spatial relationships between objects can
improve image retrieval efficiently for content-based
image retrieval. Segmentation schemes can be used to ex-
tract information on the number of mixture components
that can be used for initialization of model parameters.
Recently, with progress in research on Gaussian mixture
models, image segmentation based on Gaussian mixture
models has also become popular’™. In these models it
was assumed that the pixel intensities inside the entire
image follow a finite Gaussian mixture model distribu-
tion and the mixture parameters were estimated using the
EM (Estimation Maximization) algorithm. Segmentation
was completed in accordance to the maximum likelihood
estimator. Experimental results showed that these meth-
ods were useful and stable in image segmentation. How-
ever, the main drawback of these methods is that the
number of Gaussian mixture components (K) has to be
assumed and hence these algorithms cannot be considered
as totally unsupervised image segmentation algorithms.
Another problem in using EM algorithm in image seg-
mentation is that of model parameter initialization, which
will affect the segmentation results. Wu' has utilized the
K-means algorithm for solving the initialization of model
parameters. However, in the K-means algorithm also it is
required to assign an initial value to the number of mix-
ture components (K) in the model. Hence this become
partially unsupervised and the initial parameters are influ-
enced by the initialization of K. Compared with the most
non-hierarchical segmentation algorithm such as the K-
means algorithm, hierarchical algorithms preserve the
spatial neighbouring information among the segmented
regions. The main disadvantage with the K-means algo-
rithm is that it does not necessarily find the most optimal
configuration, corresponding to the global objective func-
tion minimum. The algorithm is also significantly sensi-
tive to the initial randomly selected segment centres. The
K-means algorithm can be run multiple times to reduce
this effect. To overcome these disadvantages, the hierar-
chical segmenting algorithm has been used.
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A number of segmentation algorithms for building a
hierarchical image representation have been proposed”™".
In hierarchical clustering, the database was divided into
various regions by multi branch tree structure and pro-
vided a more accurate number of distinct regions in the
image. After obtaining the number of components in the
mixture model, the efficiency of the segmentation was
dependent on assignment of probability density function
to the image regions. Most of the image segmentation al-
gorithms considered that the pixel intensity in each image
region followed a normal distribution, which assumed
that pixel intensity in the image region has a infinite
range. However, in any image the pixel intensities lie bet-
ween two finite values and in some image regions the dis-
tribution may be asymmetric and skewed. Neglecting the
reality of the finite range leads to serious falsification of
model estimation. The probability density function of the
doubly truncated normal distribution is given by:

g(z,/l,c):ZMfi with  Z, <z<Z,,,

[, ro
where Z;, and Z, are the truncation points and f (z) is the
probability density function of the normal distribution.
The value of 1- ng f(z)dz is significant based on the
value of mean pt and Standard Deviation o in the interval
(Z1, Zyy). This distribution includes the skewed, asymmetric
and finite range distributions as particular cases. The model
also includes Gaussian distribution as a limiting case. The

various shapes of the frequency curve of the doubly trun-
cated Gaussian distribution are shown in Figure 1.

The effect of truncation in Gaussian distribution has
been discussed by several researchers'*™*. As a result of
this finite range in pixel intensity, it is necessary to con-
sider that pixel intensities in the entire image follow a
finite doubly truncated Gaussian mixture distribution.
However, little work has been reported in the literature
regarding image segmentation based on finite doubly
truncated Gaussian mixture models. Hence in this article
we have developed an efficient image segmentation algo-
rithm assuming that the pixel intensities of the entire
image follow a finite truncated Gaussian mixture distri-
bution. The number of image regions were determined by
hierarchical clustering and the model parameters were es-
timated using EM algorithm. The EM algorithm has been
extensively used to estimate the mixture parameters'®'>.
The performance of the developed segmentation algo-
rithm was compared with finite Gaussian mixture model
with K-means and also with finite truncated Gaussian
mixture model with K-means through image quality metrics
like average distance, maximum difference, image fidel-
ity, mean square error, signal-to-noise ratio and quality
index, since the developed segmentation was efficient for
image retrieval. The accuracy of the developed segmenta-
tion algorithm was also established through a comparison
of misclassification rates. Six images, namely BIRD,
TOWER, FLAG, LENA, FISH and TOY were used for
experimentation.
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Truncated Gaussian mixture model

In low-level image analysis, the entire image was consid-
ered as a union of several regions. In each region the im-
age data were quantized using pixel intensities. The pixel
intensity Z = f (x, ¥) for a given point(pixel) (x, y) is a
random variable, because of the fact that the brightness
measured at a point in the image is influenced by various
random factors like vision, lighting, moisture, environ-
mental conditions, etc. To model the pixel intensities in
the image region, it is customary to assume that the pixel
intensity of a region in the image follows a normal distri-
bution. However Z (pixel intensity), below some value Z;,
and above some value Zy cannot exist. Then the resulting
distribution of the pixel intensities is a doubly truncated
normal distribution. The lower and upper truncation
points Z; and Z; determine the degree of truncation. It
can be seen that when the truncations were large the dis-
tribution had little resemblance to a normal distribution.
The case Z; = p, Zy; = oo, produced a half normal distribu-
tion.

Here it is assumed that the pixel intensity in the entire
image follows a K-component finite mixture of doubly
truncated Gaussian distribution. Its probability density is
of the form

K
h(z)=Y a8zl p;,07),
i=1

where K is the number of regions, ¢; > 0 are weights such
that Y5, o, =1, and

[_[_]]

2| o,

gzl 07 = ——
v2no (A-B)

—Z; <z2<Zy, 0<0,,Z; <l; <Zy,

2
-1 2=
ZM [7[ i ] ]
e
dz and B= j - dz.

,/271'6,»
The mean pixel intensity of the ith region is

G f(Z)— f(Zy)]
O(Z)—¢(Zy)

The variance of the pixel intensities in the region is

Z; - L
2t st e
V(z)=1+ .
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where

EZ)=+

Estimation of the model parameters by
expectation maximization algorithm

The likelihood function of sample observations zj, 2,---, Zy,
drawn from an image with probability function /(z, 6) =
Ym;8;(z,,0), where g;(z,,0) is the probability density
function of a truncated Gaussian distribution and is given
by

N (K
L(y) = H[Zaigi(zs’e)}-

s=1\ [=1

This implies that

K N K
log L(y) = log[Za,»g,(zs,e>]=Zlog[Za,»g,»(zs,0)]-
i=1 i=1

i=1

The first step of the EM algorithm requires reasonable
initial estimates for both parameters ,ui(o), G,»(O), i =
1, 2,..., K and component weights o from the observed
sample. The EM algorithm then iteratively calculates
maximum likelihood estimate of the unknown parameter
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E-step
In the expectation (E) step, the expectation value of

log L(y) with respect to the initial parameter vector ¥'”
is calculated given the observed data Z as:

QY. ¥")= Ey o {log L(¥) 17}

- j (log L(W) 17 He(¥, ¥©) dz
N
= Y [e(¥. W) logg(z,, ¥)dz

s=1 4

N
Y log gz, )|, ¥ ) dz

s=1 z

N
= Zlog g(z,,¥) = log L(P).

s=l1
Evaluating the expectation value of L(y), we get

0¥, ¥") = Egu {log LCP)}

K N
= ZZE(I){ti(Z, ¥ (log g:(z, ® +logm;},

i=l s=1
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where

! !
o g (z,,0")
K

l‘k(ZS,lP(l))z .
Y ez, 6
i=1

Thus

K N

oW, ¥ =YY {1z, ¥)log g,(z,0)+loga,)}
i=l s=1
K N

=YY EO YO0 £, 0)

i=1 s=1

—log[F(B)-F(A)]]+log «; },

]
fi(z,0)= e\,
\/271'6
A=)
e2 %) dt.

2r o

where

B
F(B) = f

M-step

The problem of calculating the maximum likelihood esti-
mates of the segment weights ¢y, under the additional
condition Zl’le a; = 1, can be solved by applying the stan-
dard solution method for constrained maxima. We con-
struct the first-order Lagrange-type function

k
log L(P? )+,1[1—Za§” ]

L=Eg"

i=1

where A is a Lagrangian multiplier combining the con-
straint with the log likelihood functions to be maximized.
The derivative of L with respect to a particular ¢ gives

oL _0. q®h— O‘i(l)
da, k- My _ My
o Oz, W)= O(z,9)

(1)

Updating y: For updating the parameters t;, we con-
sider the derivative of Q(¥, W) with respect to u; and
equate it to zero,

. ¥
oy .
This implies
W) _ 0y g20 | LA = [(B) 5
luk i T20 [q)(B)_q)(A) ’ ( )

where A = Z; and B = Zy,.
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Updating G,f : For updating G,%, we consider the de-
rivative of Q(¥, W) with respect to G,f and equate it to
7ero0,

0
2o, ¥y=0.
307 o] )
3]

(
T

GiZ(l)
X 1 )
F(z,,,6")~F(z,6")

~o7? 7 2 Sz 0 = 2 f(21,6)
i B F(Zm’e(l))_F(Zl,e(l))

2p ™

ﬂ'i(l) F(Zmae(l))_F(Zlae(l)) 2(1+1)
- Ny 2. (3)
B 2u07"

F(z,.00)- F(z.67)

Initialization of parameters

To utilize the EM algorithm we have to initialize the para-
meters l;, o; and o; (i = 1 to K). Z; and Z;; can be esti-
mated with the values of the maximum and the minimum
pixel intensities of the entire image respectively. The ini-
tial values of «; can be taken as ; = 1/K, where K is ob-
tained from the hierarchical segmenting algorithm.

Hierarchical clustering algorithm

Given a set of N items to be segmented and an M X N dis-
tance (or similarity) matrix, the basic process of hierar-
chical segmenting is as follows.

(1) First, assign each item to a segment, so that if we
have N items, it implies that we have N segments,
each containing just one item. Let the distances
(similarities) between the segments be the same as
those (similarities) between the items they contain.

(2) Find the closest (most similar) pair of segments and
merge them into a single segment, i.e. we will now
have one segment less.

(3) Compute distances (similarities) between the new
segment and each of the old segments.

(4) Repeat steps 2 and 3 until all items are segmented
into a single segment of size N.

Step 3 can be done using single-linkage method.
In single-linkage segmenting (also called the connect-
edness or minimum method), we consider the distance
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between one segment and another to be equal to the
shortest distance from any member of one segment to any
member of the other segment. If the data consist of simi-
larities, we consider the similarity between one segment
and another to be equal to the greatest similarity from any
member of one segment to any member of the other seg-
ment. The M X N proximity matrix is D = [d(i, j)]. The
segmenting is assigned sequence numbers 0, 1..., (m — 1)
and L(k) is the level of the kth segmenting. A segment
with sequence number m is denoted as (m) and the prox-
imity between segments (r) and (s) is denoted as d
[(r), ()].

The algorithm is composed of the following steps:

(1) Start with the disjoint segments having level
L(0) = 0 and sequence number m = 0.

(2) Find the least dissimilar pair of segments in the cur-
rent s, say pair (r), (s), where the minimum is over
all pairs of segments in the current segmenting.

(3) Increment the sequence number: m = m + 1. Merge
segments (r) and (s) into a single segment to form
the next segmenting m. Set the level of this segment-
ing to L(m) = d[(r), (5)].

(4) Update the proximity matrix, D, by deleting the
rows and columns corresponding to segments (r) and
(s) and adding a row and column corresponding to
the newly formed segment. The proximity between
the new segment, denoted (7, s) and the old segment (k)
is defined as d[(k), (r, s)] = min (d[(k), ()], d[(k), (s)]).

(5) 1If all objects are in one segment, stop. Else, go to
step.

After obtaining the final value for the number of re-
gions K, we obtain the initial estimates of 1;, a; and o; for
the ith region using the segmented region intensities us-
ing the method given by Cohen'* for doubly truncated
normal distribution.

Segmentation algorithm

After refining the parameters, the prime step is image re-
construction by allocating the pixels to the segments.
This operation is performed by segmentation algorithm.
The image segmentation algorithm consists of three steps:

(1) To obtain initial estimates of the finite doubly trun-
cated Gaussian mixture model with hierarchical
algorithm.

(2) With the initial estimates obtained in step 1, the EM
algorithm was iteratively carried out with the update
equations (eqs (1)-(3)). The EM algorithm con-
verges when the difference between the old and new
estimates was less than some threshold wvalue
(0.001), and the final estimates of the finite doubly
truncated Gaussian mixture model were obtained.
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The EM algorithm contributes to the segmentation
algorithm by improving the parameters of the
model.

(3) The image segmentation was carried out by assigning
each pixel into a proper region/segment according to
the maximum likelihood estimate of the jth element,
L;according to the following equation:

EM\2
(z; -1 )
20
Ly =max;\—r——— >
o (B—A)
where
2 L
pe | e
ERNGY X rine
7, L=
PR S W
27 oM

where Z;s are the input data (pixel intensities), and y;, o;
are the estimated parameters respectively.

Experimental results and performance evaluation

In order to evaluate the proposed model, we demonstrated
our image segmentation algorithm with finite doubly
truncated Gaussian mixture model with hierarchical clus-
tering by applying it to six images, namely BIRD,
TOWER, FLAG, LENA, FISH and TOY. We assumed
that the pixel intensities in each segment of the image fol-
low a doubly truncated Gaussian distribution and intensities
in each image follow a finite doubly truncated Gaussian
mixture distribution. Initialization of the parameters in
each segment was done and the number of segments esti-
mated using hierarchical clustering. Using the EM algo-
rithm the parameters of the mixture model were obtained.
The segmentation algorithm was used to reconstruct the
image. After developing the image segmentation algo-
rithm, it is necessary to verify the performance of the
same. Performance evaluation of the retrieved image can
be done by subjective image quality testing or by objec-
tive image quality testing. The objective image quality
testing methods were often used since the numerical re-
sults of an objective measure are readily computed and
allow a consistence comparison of different algorithms.
There are several image quality measures available for
performance evaluation of the image segmentation algo-
rithm. An extensive survey of quality measures is given
by Eskicioglu ez al.'®. The performance of the developed
algorithm was compared with the image segmentation
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Table 1. Comparative study of image quality metrics
Finite Finite
Finite Gaussian truncated Gaussian truncated Gaussian
mixture model mixture model mixture model with Standard Standard
Image Quality metric with K-means with K-means hierarchical algorithm limits criteria
BIRD Average difference 0.6963 0.0863 0.45275 —1to+1 Closest to 1
Maximum distance 0.6708 0.9708 0.2287 —1to+1 Closest to 1
Image fidelity 1.22208 1.008 0.9001 Otol Closest to 1
Mean square error 0.9982 0.8972 0.7813 0 to e Closest to 0
Signal-to-noise ratio 23454 32454 65.759 0 to 4eo As big as possible
Image quality index —0.1254 0.2354 0.756 -1ltol Closest to 1
TOWER Average difference 0.7863 0.3783 0.87817 —1to+1 Closest to 1
Maximum distance -0.9708 1.3222 0.89467 —1to+1 Closest to 1
Image fidelity 0.989 0.8744 0.748 Otol Closest to 1
Mean square error 0.9982 0.1232 0.1285 0 to e Closest to 0
Signal-to-noise ratio 12.454 29.342 42.436 0 to 4eo As big as possible
Image quality index —0.2354 —0.023 0.723 -1ltol Closest to 1
FLAG Average difference 0.0783 -0.3793 0.43808 —1to+1 Closest to 1
Maximum distance -0.6708 —0.3452 0.8978 —1to+1 Closest to 1
Image fidelity 1.76208 1.2444 0.4544 Otol Closest to 1
Mean square error 0.8982 0.7432 0.5998 0 to e Closest to 0
Signal-to-noise ratio 24454 29.342 39.734 0 to 4eo As big as possible
Image quality index -0.2354 -0.1733 0.980 -1ltol Closest to 1
LENA Average difference 0.0543 —0.8383 0.91723 —1to+1 Closest to 1
Maximum distance -0.4508 -0.3222 1.1461 —1to+1 Closest to 1
Image fidelity 1.5408 0.1124 0.678 Otol Closest to 1
Mean square error 0.7682 0.1213 0.8546 0 to e Closest to 0
Signal-to-noise ratio 36.476 35.122 47.737 0 to 4eo As big as possible
Image quality index —0.6354 1.023 0.5430 -1ltol Closest to 1
FISH Average difference 0.0563 0.4783 0.56322 —1to+1 Closest to 1
Maximum distance -0.546 -0.142 1.145 —1to+1 Closest to 1
Image fidelity 1.8978 1.2444 0.618 Otol Closest to 1
Mean square error 0.6482 0.1132 0.7058 0 to e Closest to 0
Signal-to-noise ratio 32454 35.342 49.876 0 to 4eo As big as possible
Image quality index -0.4354 -0.127 0.918 -1ltol Closest to 1
TOY Average difference 0.775 —0.6878 0.5621 —1to+1 Closest to 1
Maximum distance —-0.9543 -0.5222 1.1768 —1to+1 Closest to 1
Image fidelity 1.17608 0.5345 0.769 Otol Closest to 1
Mean square error 0.4382 0.1132 0.2255 0 to e Closest to 0
Signal-to-noise ratio 22454 32.322 29.265 0 to 4eo As big as possible
Image quality index -0.3254 -0.893 1.0010 -1ltol Closest to 1

algorithms based on finite Gaussian mixture model and
finite truncated Gaussian mixture model with K-means
algorithm through image quality metrics, by evaluating
average distance, image fidelity, mean square error, struc-
tural symmetry, cross correlation, maximum difference,
N-cross correlation, quality index, structural content. The
original and reconstructed images of BIRD, LENA,
TOWER, FLAG, FISH and TOY are shown in Figure 2.
The comparative performance of various algorithms with
reference to image quality metrics is given in Table 1 and
Figures 2 and 3.

From Table 1 and Figures 2 and 3, it can be observed
that the developed algorithm performs much superior to
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existing algorithms with respect to the image quality met-
rics.

The performance of the image segmentation algorithm
was also studied through classifier accuracy by comput-
ing the misclassification rate. The misclassification rates
of the different images, namely BIRD, TOWER, FLAG,
LENA, FISH and TOY with reference to the developed
segmentation algorithm and the finite Gaussian mixture
model with K-means algorithm are computed and given
in Table 2. From Table 2 it can be observed that the accu-
racy of the developed algorithm is superior to that of the
finite Gaussian mixture model with K-means. It is highly
desirable to develop an image segmentation algorithm
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Figure 3. The original and the reconstructed images.
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Table 2. Classifier accuracy

Finite Gaussian mixture

Finite truncated Gaussian mixture

Finite truncated Gaussian mixture model

Image model with K-means model with K-means with hierarchical algorithms
BIRD 9345 94.76 97.78
TOWER 96.34 97.11 97.98
FLAG 95.23 96.13 97.81
FISH 96.02 9691 97.54
TOY 97.34 97.12 98.17
LENA 96.12 96.87 98.43

based on finite doubly truncated multivariate Gaussian
mixture model with hierarchical clustering, which will
serve as a generic algorithm for analysing and retrieving
several images.
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