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Prediction of seasonal mean All India Rainfall (AIR)
is useful during extreme monsoon years (droughts and
floods) when the rainfall anomaly is homogeneous over
the country. It is, however, useless for any regional
hydro-meteorological applications during ‘normal’
monsoon years (70 per cent of available record), when
the rainfall anomaly is quite inhomogeneous within
the country. Further, there exists an intrinsic limit to
predict the seasonal mean monsoon. The theoretically
achievable skill (with perfect model and near perfect
data) for seasonal prediction of rainfall being barely
useful, there is a need to explore an alternative strat-
egy for monsoon prediction even if it is with a shorter
lead time. Based on some of our previous work, we
propose here that predicting the phases of the mon-
soon sub-seasonal oscillation (active and break spells)
3-4 weeks in advance is such an alternative strategy.
We argue that such predictions would be more useful
for regional hydro-meteorological applications. Poten-
tial for such extended range prediction is demon-
strated. Using an empirical model, it is further
demonstrated that this potential can be achieved and
useful prediction of monsoon breaks three weeks in
advance could be made. Future direction in improving
such extended range prediction of sub-seasonal spells
is discussed.

Keywords: All India rainfall, atmospheric general cir-
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The need and scope of prediction of seasonal
mean monsoon rainfall

LARGE scale droughts and floods of the Indian summer
monsoon (ISM) adversely affect country’s agricultural
production and economy and also cause immense property
damage and human loss. Forewarning of seasonal mean
rainfall is, therefore, demanded by the country’s policy
makers. As a result, for over a century, attempts have been
made to predict the total summer monsoon rainfall using
empirical techniques involving local and global antece-
dant parameters that correlate with the monsoon rainfall'~.
The linear and nonlinear regression models as well as the
neural network-based models’ perform reasonably well
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when the monsoon is close to normal but fails to predict
the extremes with useful skill. A case in point is the failure
of almost all empirical models in predicting the drought®
of 2002. Another intrinsic limitation of the empirical
techniques arises from interdecadal variation of the corre-
lations between predictors and monsoon rainfall®~'!. Dy-
namical prediction of the seasonal mean monsoon using
state-of-the-art climate models, therefore, offers a logical
alternative to empirical forecasting. Unfortunately, the skill
of prediction of the summer precipitation over the Asian
monsoon region is currently negligible for almost all
state-of-the-art atmospheric general circulation models
(AGCM)'*'°. Multi-model super-ensemble forecasting'
shows some promise of improving the dynamical fore-
casts beyond the skill of individual models. However, the
skill of such models also remains in the sub-useful range.

Reasons for AGCMs inability to predict the
seasonal mean Indian monsoon rainfall

The inability of the state-of-the-art AGCMs in predicting
the seasonal mean monsoon appears to be due to the fol-
lowing major factors.

First, even though AGCMs have improved over the last
three decades in simulating the global climate in general,
most models still have major systematic bias in simulating
the seasonal mean ISM precipitation and its interannual
variability (IAV)*'~?°. Charney and Shukla®® suggested
that low frequency boundary forcing such as the tropical
sea surface temperature (SST) variations predisposes the
monsoon system toward a dry or a wet state. In other
words, anomalous boundary conditions may provide po-
tential predictability. For this to be true, models should
be able to capture the interannual variability of the ISM.
However, in reality, this is not the case as most models
find the simulation of even the mean summer monsoon
precipitation extremely difficult and have even greater
difficulty in simulating the interannual variability of the
ISM rainfall.

The predictable component of IAV of Indian summer
monsoon comes from the teleconnection of Indian mon-
soon with slowly varying ‘external’ forcing such as the El
Nino and Southern Oscillation (ENSO)*’. Simulation of
the correct sign and amplitude of IAV of the monsoon by
the AGCM depends on its ability to correctly simulate

195



SPECIAL SECTION: INDIAN MONSOON

this teleconnection pattern. Almost all AGCMs have sig-
nificant bias in simulating this teleconnection pattern.
This is one contributing factor for the AGCMs inability
to simulate the observed IAV of ISM.

A part of IAV of the ISM arises from local interaction
between the warm pool over the eastern Indian Ocean
(I0), Bay of Bengal and western Pacific and the atmos-
phere®®. This air—sea interaction leads to a negative corre-
lation between SST and precipitation over the region
while AGCMs forced with observed SST tend to simulate
a positive correlation between precipitation and SST. There-
fore, coupled GCMs (CGCMs) are essential for predicting
the IAV of the ISM'®. However, the current CGCMs also
have large systematic biases in simulating the ISM, limit-
ing their utility for predicting the seasonal mean ISM.

Finally, there appears to be an intrinsic limit on pre-
dictability of ISM due to the existence of significant ‘cli-
mate noise’ in this region. Following the seminal work of
Charney and Shukla®®, even though it has been shown® "
that the tropical climate is largely driven by anomalous
boundary conditions and its simulation is much less sen-
sitive to initial conditions, the ISM appears to be an ex-
ception within the tropics and its simulation seems to be
quite sensitive to initial conditions****=*7_ In the present
study, the seasonal predictability of the ISM is examined
using a fully atmosphere—ocean coupled GCM that has a
realistic summer monsoon climatology.

The coupled model we use here has ECHAM4 as at-
mosphere component®®. The model equations are solved
on 19 hybrid vertical levels (top at 10 hPa) by using the
spectral transform method. Here ECHAM4 is used with a
triangular truncation T42, which corresponds to an asso-
ciated Gaussian grid of about 2.8 x 2.8° in latitude and
longitude. The ocean model is similar to the one used by
Météo-France, i.e. OPA 8.1. It is the ocean modelling
system developed by the LODYC team in Paris®”. OPA is
a finite difference OGCM and solves the primitive equa-
tions with a nonlinear equation of state on an Arakawa C-
grid. The present configuration uses horizontal resolution
of 1.5 x 2° in latitude and longitude with 0.5° latitudinal
resolution close to the equator. There are 31 vertical lev-
els with a rigid lid approximation.

The hindcasts are part of the DEMETER project™. A
nine member ensemble of 21 year hindcasts for the period
1981-2001 has been utilized to estimate the predictability
of the ISM. Each hindcasts starts from 1 May initial con-
ditions (9 members for each year). The total length of
each hindcast is six months. The average rainfall during 1
June to 30 September is considered here as seasonal mean.
This model has been chosen due to its rather realistic rep-
resentation of the features of observed summer monsoon
rainfall climatology (Figure 1). The observed rainfall data
is taken from the CMAP (Climate Prediction Center
Merged Analysis of Precipitation®') that is based on merg-
ing of gauge observations, satellite estimates and numeri-
cal model outputs. Most of the features of the seasonal
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rainfall distribution over monsoon trough, western coast
of India and the rainfall maxima over the eastern equato-
rial Indian Ocean are well simulated.

The model’s ability to correctly predict the observed
IAV of the ISM, together with the analysis of the internal
TIAV (ITAV) and forced IAV (FIAV) in these hindcasts is
examined using a rainfall index of monsoon. The Ex-
tended Indian Monsoon Rainfall (EIMR), defined as the
average precipitation over the homogeneous region 70°—
100°E, 10°-30°N** is used for this purpose. There is a
relatively large spread amongst the ensemble members for
most years (Figure 2) and somewhat less inter-member
variability for some years (e.g. 1988, 1997). For most years
however, there is hardly any correspondence with the ob-
served EIMR (from CMAP). For example, in 1997, all
model EIMR show low values while the observed rainfall
is high. Thus, despite the ability of the model to depict
the observed amplitude of IAV of the summer monsoon,
it fails to predict the phases of observed IAV of ISM.
This figure also illustrates the significant member to
member variability in predicting the seasonal mean of
ISM precipitation.

Is the poor skill of predictions of seasonal mean sum-
mer monsoon precipitation a systematic problem of the
model or is it endemic to the ISM? To investigate this, it
is essential to understand the components of interannual
monsoon variability. The observed interannual variation

Figure 1. Climatological June—September (JJAS) averaged rainfall
(mm day’l).
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Figure 2. Ensemble evolution of JJAS precipitation averaged over the
region 70°-110°E, 10°-30°N of each ensemble member (thin blue
lines), the ensemble mean (thick blue line) and the observed values
from CMAP (thick red line).
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of the ISM is in fact made up of a ‘forced” component
and an ‘internal’ component. The observed time series is
analogous to one simulated member. Since the statistics
on the well-observed IAV is limited to around 21 years, it
is difficult to extract a FIAV from the total IAV in the
observed time series. Since we have only nine member
hindcasts, the variance amongst the 21 ensemble means
(i.e. FIAV) could still contain some influence of the
ITAV. We, therefore, compare the total IAV with the
IAV* (Figure 3). The total IAV, which is a combination
of FIAV and IIAV, is calculated as the variance of 189
(21 years X 9 members) JJAS mean precipitation values.
The ratio between total IAV and the ITAV from the hind-
casts is shown in Figure 3. A ratio close to 2 (or less)
represents regions where the IIAV is comparable to (or
larger than) the FIAV. While the predictability of the
summer precipitation over the equatorial Pacific may be
significant, that over the ISM (north of 10°N) is marginal,
where the internal variability appears to be the dominant
factor. The conclusion on the role of internal variability
over the ISM region derived from this model is nearly
identical to that obtained by Goswami* using GFDL
AGCM forced with observed monthly mean SST. There
could be some influence of the model parameterization
on the IIAV in the hindcasts. However, the result is con-
sistent with findings of Kumar and others'* where they
used a large number of AGCMs and found that the mean
probability density function (PDF) of correlations be-
tween simulations and observations under perfect model
scenario is about 0.7, indicating that only about 50% of
the ISM variability is forced while the remaining 50% or
more is internally driven.

What is responsible for the enhanced internal AV over
the Asian monsoon region? This internal variability has
been shown to be generated by the vigorous intraseasonal
oscillations over the monsoon regions*’ by virtue of the
broad-band nature and the binomial character of rainfall
time series'®. Therefore, the current generation of GCMs
(coupled or uncoupled) need to be improved in simulat-
ing the intraseasonal variability and the associated air—sea
interaction processes in order to be able to represent the
observed ‘climate noise’ realistically. While these im-

Predictability ratio (total IAV/internal I1AV)

Figure 3. Predictability ratio defined as the ratio of total interannual
variability (variance of 21 years and nine members) and the internal in-
terannual variability (variance among members averaged over the
years). Regions with values less than 2 are regions where the rainfall
variability is mostly determined by the internal variability.
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provements demand better understanding of the physical
processes, the future of seasonal prediction of the sum-
mer monsoon appears rather bleak.

Futility of prediction of seasonal mean
All India Rainfall

As mentioned above, the empirical models as well as the
dynamical models attempt to predict the area averaged
rainfall over the continent (AIR). This is primarily be-
cause skill in predicting rainfall over smaller spatial scale
is even poorer. The utility of forecasts of (averaged) all
India summer monsoon rainfall to the user community,
i.e. the agriculture and hydrological sector, remains un-
certain. While the anomaly of seasonal mean rainfall has
the same sign over most of the continent in extreme flood
or drought years, it is rather inhomogeneous in ‘normal’
monsoon years (Figure 4). Therefore, it would be difficult
even with a skillful forecast of the all India seasonal rain-
fall to provide regional communities with information
that could be used effectively in agriculture and water re-
sources management'’.

Need for an alternative approach

Thus, there not only exits an intrinsic limit to predicting
the seasonal mean ISM, but such a forecast may not be of
much use most of the time. Research efforts on seasonal
prediction should continue so that dynamical models will
be able to simulate and predict the extreme monsoon
droughts and floods, when the accurate seasonal predic-
tion is needed most. However, it is also important to ex-
plore an alternative strategy of extended range prediction
even if with lead time less than a season.

We propose that skillful and timely forecast of the mon-
soon sub-seasonal variations (active-break spells) 3—4
weeks in advance would be more useful for regional agri-
cultural and hydrological planning. Instead of the total
quantum of rainfall for the whole season, prediction of
active and weak spells would be more important for two
reasons. (i) As sowing, harvesting and critical growth peri-
ods of most crops depend crucially on the timing of the
dry and wet spells, the prediction of these spells even 2-3
weeks in advance will be of immense help. (ii) About 80
per cent of natural disasters are caused by extreme hydro-
meteorological events (e.g. flash flood). These extreme
rainfall events are modulated by intraseasonal variabi-
lity™*°_ If we could provide useful forecast of the in-
traseasonal variability with lead-times of a few weeks, it
will help the managements of weather-sensitive socio-
economic activities and reduce the damage caused by ex-
treme events. Further, there may be higher scope of pre-
dicting the intraseasonal spells compared to that for
predicting the interannual variation of the seasonal mean.
This conjecture is based on the following observation.
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Figure 4. Anomalies of summer mean rainfall.
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Figure 5. a, The thick red (blue) line is the monsoon ISO signal start-

ing from troughs (peaks) of the index. The thin red (blue) line is the
standard deviation (or spread) of different evolutions as a function of
days from the initial date corresponding to all troughs (peaks) of the
index representing transitions from break to active (active to break). b,
Same as (@) but for high resolution gridded daily rain gauge data® for
the JJAS season of 1951-2003, averaged over 70°-90°E, 18°-30°N. ¢,
Same as (a) but for evolution of zonal wind at 850 hPa averaged over
80°-95°E, 12°-18°N. d, Same as (a) but for relative vorticity at
850 hPa averaged over the monsoon trough.

The signal of TAV of seasonal mean (s.d. of [AV of seca-
sonal mean relative to long-term mean) is small (10 per-
cent) and could be difficult to untangle from ‘climate
noise’. On the other hand, the signal of intraseasonal
variability (ISV) (s.d. of ISV relative to long-term mean)
is much larger (25-30 per cent) making it potentially
separable from the noise. In addition, the ISV of the rain-
fall seems to be rather well tied up with oceanic variations
(SST) and provides some memory of the subseasonal
variation.

Intraseasonal predictability

In this section we briefly describe a method to estimate
potential predictability of active and break phases of
monsoon ISO from observations, based primarily on the
work reported by Goswami and Xavier®'. The method de-
pends on the realization that if monsoon active and break
were repeatable sinusoidal oscillations, they would be in-
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finitely predictable. The limit on predictability arises
from the event-to-event variability of ISO as well as dif-
ferences in evolution of the ISO from the same phase in
different events. Therefore, divergence in evolutions from
a given phase between different events may give us a
measure of potential predictability of the monsoon ISO.
We apply this idea on an observed index of monsoon ISO
defined as the time series of CMAP®? rainfall anomalies
(10-90 days band passed) averaged over 70°-90°E, 15°-
25°N and normalized with its own standard deviation.
Out of the 23 summer monsoon seasons considered here
(1979-2002), 66 active and 63 break conditions are iden-
tified. Evolutions of the index for 25 days from all these
active and break conditions are grouped separately and
the spread in evolutions as measured by the standard de-
viation of these evolutions are shown in Figure 5. The
limit on predictability is reached when the spread in evo-
lutions become as large as the signal. Here the signal is
the amplitude of the ISO, defined as the standard devia-
tion of the filtered time series over a period comparable
to the period of the ISO (taken as 50 days). The thick red
(thick blue) line in Figure 5 a is the mean (averaged over
all 66 or 63 events) signal starting from troughs (peaks).
As expected, the signals starting from either troughs or
peaks are close to each other. The spread becomes larger
than the signal in eight days (20 days) for transitions
from break to active (active to break). Thus, monsoon
breaks are inherently more predictable than active condi-
tions. Generally, a transition from an active (break) phase
goes over to a break (active) phase within about 15-20
days. These results indicate that useful prediction of mon-
soon breaks could possibly be made up to about 20 days
in advance while those for active conditions is likely to
be limited to a lead time of about 10 days. This has been
verified with a rainfall time series of high resolution
gridded daily rain gauge data™ for the JJAS season of
1951-2003, averaged over 70°-90°E, 18°-30°N (Figure
5b).

Since the monsoon ISOs are convectively coupled pheno-
mena, these fundamental differences in the predictability
of active and break phases are evident in the circulation
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parameters as well. 10-90 day filtered daily relative vor-
ticity anomalies at 850 hPa level averaged over the mon-
soon trough (70°-90°E, 15°-25°N) is constructed from
NCEP/NCAR reanalysis™ for the same period (1979-
2001). The vorticity time series is also normalized by its
own standard deviation (4.93 x 10 s™). Spreads in evolu-
tion of normalized vorticity from active to break and
from break to active, calculated using initial dates for ac-
tive and break from the rainfall index (Figure 5 d), are
similar to those for precipitation (Figure 5 a). Examina-
tion of the spread in transitions of an 850 hPa zonal wind
index over 80°-95°E, 12°S—18°N also shows similar be-
haviour for divergence of evolutions for the two transi-
tions (Figure 5 ¢).

What is responsible for the fundamental difference in
divergence of trajectories from break to active as com-
pared to that from active to break? As a result of this
clustering of synoptic activity by the ISOs", the transi-
tion from break to active phase of monsoon ISO occurs
through growth of gregarious convective activity and their
organization while the transition from active to break
represents the decay phase of organized convection, with
far fewer growing convective elements. The growth of er-
rors in the transition from break to active is, therefore,
governed by fast growing convective instability while the
growth of errors in the transitions from active to break is
governed by the low frequency 30-60 day oscillations of
the monsoon Hadley circulation®”.

A real-time prediction strategy

The observed regularities in the evolutions and the simi-
larities in the large-scale spatial patterns of monsoon ISOs
have motivated us to attempt an analogue method for ex-
tended range monsoon forecasting. Even though one can-
not expect exactly identical analogues, as the weather
hardly repeats, it should be possible to find closely match-
ing analogues of the large-scale envelope of monsoon intra-
seasonal variability. The success of the forecasts would
depend on the number of such analogues one can isolate
from the data. Hence, the constraints for choosing a vari-
able for forecasting must be a reasonably long history ob-
servation as well as its availability on real-time. One such
variable that bears close association with the rainfall is
the OLR. We choose NOAA interpolated OLR*® as it
meets these criteria.

We assume that the predictable component of the sub-
seasonal variations is the large-scale envelope of intrasea-
sonal oscillations that contain high frequency weather
fluctuations embedded on it. It is indeed a difficult task to
predict the day-to-day weather variations 15-25 days in
advance. To highlight the low frequency intraseasonal
variations and to smoothen the high frequency synoptic
weather variations, the NOAA interpolated daily OLR data
are converted into 5 day averages (pentad means). The
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model we propose is to predict the intraseasonal varia-
tions of pentad averaged data. The total data length is di-
vided into two segments, namely a 21-year modelling
period (1 January 1979-31 December 1999) and a nearly
6-year hindcast period (1 January 2000-29 August 2005).
Pentad OLR data till the beginning of the hindcast period
(say t = to; here, 1 January 2000) is subjected to EOF de-
composition®’ into a number of spatial and temporal
modes. EOF decomposition is performed over the domain
50°-110°E, 15°S-30°N as this area represents the maxi-
mum sub-seasonal variability during the summer mon-
soon season. The first 10 modes contribute about 75% of
the total variance. Higher modes may be considered as
noise. A second step to filter out the noise from the data
is by reconstructing the OLR data with the first 10 EOFs
and PCs as

10
OLR, (x,y,1)= ZEOF,, (x, V)X PC, (1), (D

n=1

where OLR,(x, v, t) is the reconstructed OLR, EOF,(x, y)
and PC,(¢) the nth EOF and PC respectively. Ten EOFs are
chosen as a compromise between maximizing the amount
of variance for the reconstructed OLR data and minimiz-
ing the noise in the form of higher modes. The seasonal
cycle of OLR is retained in the modelling data and there-
fore the predictions will also contain the seasonal cycle.
However, the presence of winter season in the modelling
data will not affect predictions of summer values due to
the intrinsic property of analogue method that automati-
cally identifies suitable analogues from the corresponding
season. This feature is highly advantageous for opera-
tional forecasting purposes as it requires minimum data
processing efforts. The details of the analogue model and
evaluation of its skill in hindcasts are presented in detail
by Xavier and Goswami’®. A brief summary is presented
here.

1. Consider the spatial pattern of ¢, and find the spatial
correlation (in the domain 50°-110°E, 15°S-30°N)
with the spatial patterns at each time step in the mod-
elling period.

2. Find the spatial root mean square error (RMSE) be-
tween spatial pattern of fy and the spatial patterns at
each time step in the modelling period.

3. Check whether the spatial correlations are above 0.7
and spatial RMSE less than 20 W m™. These values
are arbitrarily chosen, so as to have enough number of
analogues. Those patterns satisfying this criterion are
considered as the spatial analogues of #,. Let they be
pi,i=1,2,..., N, where N is the number of spatial ana-
logues found. Typical values of N are around 55.

4. Consider the evolution of PC1 from #4—5 to ty and find
the temporal correlation and RMSE between the PC1
from p;=5 to p;, i = 1, 2,..., N. If the correlations are
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greater than 0.5 (arbitrary, yet gives enough number
of analogues) and RMSE less than unit standard de-
viation of PC1, then those are the temporal analogues
of PC1 from #,-5 to ty. Let them be g;, j =1, 2,..., M,
where M is the number of temporal analogues (typi-
cally of the order of 20) of PC1 and M = N.

5. Forecasts of PC1 at lead time 7 pentads are generated
as

1 M
PCl(ty +7) = HZ PCy(q; +7). (2)
j=1

6. Repeat steps 4-5 for PC2, PC3,..., PC10. Then we
have the predicted values of each PC as PCy(¢ + 1),
k=1, 2, ..., K, where K is the number of EOFs used.
Here K = 10.

7. Predicted OLR values for lead time 7 are generated as

K
OLR(x, y,1+7) = Y EOF, (x, )X PC; (t +7). (3)
k=1

No forecast is possible if N = 0 or M = 0. Such time steps
are considered as unpredictable by this method. However,
with the correlations and RMSE criteria used here, no
such unpredictable time steps are found during the hind-
cast period. Since our interest is in predicting the in-
traseasonal variations embedded on the annual cycle and
in order to eliminate any artifacts due to the apparent skill
in predicting the annual cycle, the intraseasonal anoma-
lies are extracted from the total OLR predictions and the
corresponding observations by removing the corresponding
climatological annual cycle. The predictions are scaled by
a factor determined by the ratio of variance explained by
the first 10 EOFs to the total OLR variance. Hereafter, all
the results presented are based on the intraseasonal OLR
anomalies computed as described above.

A few important features of the predictions are high-
lighted here. Predictions are significantly skillful up to 5
pentads in advance (Figure 6 a). There are differences in
predictability of ISV depending on the initial condition
from where the forecasts are made®' =, This property has
been verified here by selecting a number of active and
break conditions using a normalized index OLR over cen-
tral India. Dates when the normalized OLR value below —1.0
is considered as active condition and when it is above
+1.0 as break. Forecasts made from these active and
break initial conditions are compared with the corre-
sponding observations and the correlations over the num-
ber of active and break states are given in Figure 6 b.
Supporting the findings of Goswami and Xavier'!, we
find that the forecasts starting from an active monsoon
initial condition remain skillful even up to 5 pentads,
while those starting from a break like initial state show
useful skills only up to 2-3 pentads. Generally, an active
condition evolves into a monsoon break in about 20 days
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and the results indicate higher predictability of break
conditions (initialized from an active state).

4 pentad lead predictions of OLR variations over central
India (Figure 7 @) show that most of the large intrasea-
sonal convection variability is forecasted fairly well. A
case in point is the fairly accurate predictions of the long
mid-season break of 2002 that resulted in the unprece-
dented drought over the country. Another important util-
ity of this forecasting strategy is to generate predictions
for smaller regions (or regional scale forecasts). Regional
forecasts made for six regions of the country indicate
high skills for the central and western Indian regions
(Figure 7 b).

Conclusion and discussions

While prediction of seasonal mean all India rainfall may
be useful in getting an outlook of the agricultural produc-
tion of the country as a whole, it is not useful for individual
farmers as the rainfall anomaly is highly inhomogeneous
over the country during ‘normal’ monsoon years. Further,
due to existence of significant ‘climate noise’ in the re-
gion, the skill of prediction of seasonal mean Indian
summer monsoon may remain poor. Thus, there is a pro-
found need for an alternative strategy to prediction of
seasonal mean AIR.

The prediction of the active and break spells of mon-
soon 2-3 weeks in advance is proposed as such an alter-
native strategy here. First, the physical basis for such a
prediction strategy is established from the calculation of-
potential predictability of monsoon ISOs. Then, an ana-
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Figure 6. a, Spatial and temporal correlations between observations
and predictions over Central India at different lead times. b, Temporal
correlations between predictions and observations from active and
break initial conditions at different lead times.
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Figure 7. a, Prediction of OLR anomalies (W m™) at 4 pentad lead in comparison with observed values over the region 75°—
95°E, 20°-25°N for the JTAS season of the hindcast period. b, The correlation coefficient between 4 pentad lead predictions and

observations averaged over these regions for the JJAS period.

logue technique is proposed and its skill in predicting the
active and break spells 2—-3 weeks in advance is demon-
strated. This model has great potential for real time pre-
diction as it does not suffer from the so-called ‘end point’
problem. Moreover, it is demonstrated that the model has
skill in predicting the monsoon ISOs on smaller regional
scales.

The success of the simple empirical model presented
here in predicting the phases of monsoon sub-seasonal
oscillations three weeks in advance is noteworthy. This is
a simple linear technique. However, the probability dis-
tribution function of the higher frequency component of
monsoon sub-seasonal oscillations (e.g. 10-20 day mode)
appears to indicate nonlinearity. Therefore, a judicious
combination of linear and nonlinear time series prediction
techniques may yield improved prediction of the active—
break phases. Such a technique was successfully used to
produce improved seasonal prediction of AIR’.

Dynamically, coupled ocean—atmosphere models must
be used to predict the monsoon subseasonal oscillations
as it is now established that they are associated with ocean—
atmosphere interactions. However, two major problems
have kept the skill of any such coupled model in predict-
ing the monsoon sub-seasonal oscillations at a very low
level. The first problem is related to the fact that most
coupled models have large systematic bias in simulating
the statistics of observed summer ISOs. The second one
is more fundamental. The sub-seasonal oscillations have
very large spatial scale and initial error in describing them
is generally quite small while the small spatial scales are
not well represented in the initial condition. Rapid growth
of errors in small scales (in any such models) and nonlin-
ear cascading of these errors to the larger ISO scale
makes the errors in the ISO scale very large in a rela-
tively short time. This essentially makes it difficult to
predict them. If, however, some method of initialization
could be evolved to prevent this nonlinear cascading of
errors, dynamical models will be able to produce useful
forecasts of sub-seasonal phases.
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