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Cloning of two chickpea cDNAs
encoding calcium-dependent protein
kinase isoforms

S. R. Syam Prakash and Chelliah Jayabaskaran*
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Bangalore 560 012, India

In plants, calcium-dependent protein kinases (CPKs)
constitute a unique family of enzymes consisting of a
protein kinase catalytic domain fused to carboxy-
terminal autoregulatory and calmodulin-like domains.
We isolated two ¢cDNAs encoding calcium-dependent
protein kinases (CaCPK1 and CaCPK?2) from chickpea.
cDNAs encoding the two isoforms share 55.2% iden-
tity at the nucleotide level and 51.1% identity at the
amino acid level. CaCPK1 and CaCPK2 predicted
protein sequences are 556 and 540 amino acids in length
with corresponding molecular weight of 62 and 61 kDa
respectively. The CaCPK1 possesses four EF-hands
whereas CaCPK2 has three EF-hands. The predicted
amino acid sequence of CaCPK1 is highly homologous
to Dacus carota CPK (84%) and CaCPK?2 to Arabidopsis
thaliana CPK7 (80% ). Southern analysis showed that
CaCPK1 and CaCPK2 proteins are both encoded by
single copy of genes in the chickpea genome.

Keywords: Calcium-dependent protein kinase isoforms,
cDNA cloning, chickpea (Cicer arietinum), EF-hands,
Southern blot analysis.

CALCIUM acts as a second messenger in the signal trans-
duction of a variety of environmental stimuli'. Molecular
decoders of calcium signals are the calcium-binding proteins,
which include protein kinases regulated by calcium. Four
major classes of Ca**-regulated protein kinases have been
characterized in plants are: calcium-dependent protein
kinases (CPKs), CPK-related kinases (CRKs), calmodulin-
dependent protein kinases (CaMKs), and calcium and
calmodulin-dependent protein kinases (CCaMKs). Of these
four classes, the predominant forms of Ca**-regulated
protein kinases in plants are CPKs, which are identified
as Ser/Thr protein kinase family. They have been implicated
as key elements in signalling processes. CPKs have ac-
quired CaM independence due to the presence of internal
high affinity Ca**-binding sites’. They have a variable N-
terminal domain, a catalytic domain, an autoinhibitory
region and a calmodulin-like domain®~’. From an evolutio-
nary standpoint, it has been suggested that genes encoding
CPKs have evolved using the fusion of a gene encoding the
catalytic/autoinhibitory domain of Ca**/CaM-dependent
protein kinase and a gene encoding a CaM-like protein®®.
Many CPKs have been cloned and characterized from a
wide variety of plant species including soybean®, Arabi-
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dopsis7, maize , rice . mungbean14, potatols, straw-
berry16, cucumber!?, zucchini'® and tobacco'®?°. There has
been considerable progress in plant CPK studies from
identifying the new isoforms and cloning corresponding
genes to clarify their specific roles in signal transduction
cascades involving plant growth and development, and
various stress responses. In Arabidopsis®” and in rice®', it
has been found that there are 34 and 29 CPK isoforms res-
pectively. Different CPK isoforms in a given plant species
may be distinct in their expression patterns and physiologi-
cal functions.

In this communication, we report the isolation and
characterization of two cDNAs from chickpea that encode
two CPKs (CaCPK1 and CaCPK2). These two isoforms
are 556 and 540 amino acid residues in length respecti-
vely and 55% identical. The most notable differences in
the primary structures of these two isoforms are the
CaCPK1 has a 79 amino acid variable domain and
CaCPK2 has a 63 amino acid variable domain. CaCPK1
contains four EF-hands whereas CaCPK2 has three EF-
hands.

A cDNA library of chickpea (Cicer arietinum L. cv.
Kabuli) stem constructed in a Uni-ZAP XR vector was a
gift from Tom W. Okita (Washington State University, USA).
For library screening, a rice CPK ¢cDNA, OsCPK2"” was
randomly labelled with [a-**P] dCTP using random
primer labelling kit (Fermentas, Germany) and used as a
probe to screen membrane lifts of 2 x 10° plaques grown in
E. coli XL-1 Blue MRF’ cells. Hybridization and washing
were performed as described previously'’. Of the five
plaques affording positive signals, two of them were puri-
fied through two additional cycles of hybridization. The
purified AZAP II clones were in vivo excised as
pBluescript SK (-) phagemids and transformed into E.
coli SOLR cells (Stratagene). The plasmids were se-
quenced and the two cDNAs were compared at both nucleic
acid and amino acid levels by using PILEUP and GAP
programs™* and found to be partial, lacking 5 ends. To ob-
tain 5’ terminal sequence of the two truncated clones, 5
RACE was performed by using the FirstChoice™ RLM-
RACE kit (Ambion, USA) according to the manufacturer’s
instructions with sequence-specific reverse primers. The
5" RACE products were cloned into pTZ57R T/A cloning
vector (Fermentas) and sequenced.

DNA sequencing was carried out by the dideoxy chain
termination method™® using fluorescent nucleotides in an
automated DNA sequencer, PRISM™ Ready Reaction
DyeDeoxy"™ Terminator Cycle Sequencer. For comparison
and analysis of the sequence data the following programs
were used: BLAST*', FASTA, GAP, MAP, SEQED and
TRANSLATE of Genetics Computer Group (GCG), Wis-
consin, version 7.0%*. Multiple sequence alignment was
performed using the Clustal W, European Bioinformatics
Institute, at the ExPasy site (http://www.expasy.ch). Phy-
logenetic tree was created according to the neighbour-
joining method clustering strategy™ .
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Genomic DNA was isolated from chickpea seedling
leaves®®. Ten microgram portions was digested with re-
striction enzymes EcoRI, Hindlll, Kpnl, BamHI and Xbal,
electrophoresed through 0.8% (w/v) agarose gels and
blotted under denaturing conditions on to Hybond N* nylon
membranes (Amersham). We used PCR amplified cDNA
probes labelled with [a->*P]-dCTP using a random primer
labelling kit (Fermentas) as follows: CaCPK1 cDNA nu-
cleotides 1-222 (5’-specific sequence corresponding to
N-terminal variable domain) and CaCPK2 c¢cDNA nucleo-
tides 1-198 (5’-specific sequence corresponding to N-
terminal variable domain). Hybridization was performed in
a solution of 6 X SSC, 5 x Denhart’s reagent, 0.5% (w/v)
SDS and 100 pg/ml denatured salmon sperm DNA. After
overnight incubation at 56°C, the filters were washed
twice with 2 X SSC containing 0.5% (w/v) SDS for 5 and
15 min respectively at room temperature, once with 0.1 X
SSC containing 0.5% (w/v) SDS at 37°C for 30 min, once
with 0.1 x SSC containing 0.5% (w/v) SDS at 68°C for
30 min and followed by a final wash with 0.1 x SSC at
room temperature for 5 min. The filters were then dried
and wrapped in a thin plastic bag before exposure to
autoradiographic film.

Sequence data have been deposited at the EMBL/
GenBank under accession numbers AY312268 for
CaCPK1 and AY312269 for CaCPK2.

A chickpea cDNA library constructed in Uni-ZAP XR
vector’’ was screened by plaque hybridization with rice
CPK cDNA (OsCPK?2) as the probe. Two of the positive
plaques were purified and in vive excised as pBluescript
phagemids and their inserts were completely sequenced.
The cDNA insert of the first clone was found to be
1559 bp in length and consisted of a 1059 bp open reading
frame without an initiating codon and terminating in an
amber codon TGA. The cDNA insert of the second clone
was found to be 1463 bp in length and consisted of a
1089 bp open reading frame without an initiating codon
and terminating in a stop codon TAG. Since the reading
frames of both clones did not begin with a methionine
start codon and there was no 5’-untranslated region, these
clones were considered to be partial ones. Additional se-
quences of 5" ends of the cDNAs were obtained by 5’
RACE. Thus, the combined sequences of the partial
clones and the 5° RACE products were found to be 2228
and 2144 bp respectively for the two clones, and we des-
ignated the clones as CaCPK1 and CaCPK2. Full-length
cDNA of CaCPKI1 consists of 60 bp of 5 -untranslated
region, 1668 bp of coding region, 481 bp of 3’-untranslated
region and 19 bp of poly (A) tail, encoding a polypeptide
of 556 amino acids with a calculated molecular weight of
62 kDa and an isoelectric point of 5.92. Full-length
cDNA of CaCPK2 consists of 150 bp of 5’-untranslated
region, 1620 bp of coding region, 353 bp of 3’-untranslated
region and 21 bp of poly (A) tail, encoding a polypeptide
of 540 amino acids with a calculated molecular weight of
61 kDa and an isoelectric point of 6.2. Two cDNA clones
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are 55.2% identical at the nucleotide level. The 5’- and
3’-untranslated regions are highly diverse and show only
28.5 and 43.2% identities respectively.

The deduced chickpea CaCPK1 and CaCPK2 proteins
contain all the characteristics of a calcium-dependent protein
kinase (Figure 1). The N-terminal variable domain consists
of 79 amino acids in CaCPK1 and 63 amino acids in
CaCPK2. The kinase catalytic domain is 276 residues in
CaCPK1 and 262 residues in CaCPK2. The C-terminus of
the predicted polypeptide of CaCPK1 contains a calmodulin-
like domain consisting of 170 amino acids with four
highly conserved Ca**-binding EF-hands, while CaCPK2
contains 184 amino-acid spanning calmodulin-like domain
with three highly conserved Ca**-binding EF-hands. An
autoinhibitory junction domain of 31 amino acids in length
joined the kinase domain and the calmodulin-like domain
of both isoforms of CaCPKs. Comparison of the CaCPK1
and CaCPK2 sequences to other known CPK proteins in
the databases showed that CaCPK1 is 84% homology to
DcCPK from carrot (Figure 2a)*®, 83% homology to
NtCPK1 from tobacco'®, 80% homology to OsCPK2 from
rice'? and 53% homology to AtCPK7 from Arabidopsis’,
while CaCPK2 has 80% homology to AtCPK7 from
Arabidopsis®, 66% homology to NtCPK1 from tobacco',
55% homology to OsCPK2 from rice'’ and 50% homo-
logy to DcCPK from carrot™.

In order to determine the functional relationship among
CPK genes, a phylogenetic tree was created according to
the neighbour-joining method clustering strategy”, using
ClustalW program with the deduced amino-acid se-
quences from cloned CPKs. This analysis included sequences
from monocots and dicots (maize, rice, zucchini, tobacco,
Arabidopsis, soybean, mungbean, strawberry, sweet po-
tato and carrot), a moss (Tortula ruralis) and an alga
(Chlamydomonas eugametos). Analysis of the phyloge-
netic tree revealed that this particular family of plant
kinases could be divided into various subgroups. The
various maize, rice and Arabidopsis CPK isoforms were
found through the phylogram, with CaCPK1 being more
closely related to DcCPK and NtCPK1 with CaCPK2
coming in a separate subgroup with more close relative-
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Figure 1. Schematic diagram showing the four predicted structural

domains in CaCPK1 and CaCPK2. Numbers denote the positions of
amino-acid residues. N, Amino-terminal variable domain; K, Kinase
domain; A, Autoinhibitory domain; CaM, Calmodulin. The bars within
the CaM-like domain represent the EF-hand Ca**-binding sites.
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ness to AtCPK7 (Figure 2 b). The distribution of different
members of the CPK family from a given species among
the different groups suggests that the group might have
different function(s), and CPK within a group might have
similar function(s). Since CaCPK1 and CaCPK2 come in
different groups, it is likely that these isoforms could per-
form different functions in chickpea.

In order to examine the copy number of CaCPKI and
CaCPK2 genes in the chickpea genome, Southern blot
analysis was performed using isoform-specific probes.
For Southern blot analysis of CaCPK1, chickpea genomic
DNA was digested with EcoRI, Hindlll, Kpnl and Xbal
that do not cut the variable domain of CaCPK1 cDNA, and
BamHI that cut the variable domain of CaCPK1 cDNA
once. One band was detected in the DNA digested with
EcoRl, Hindlll, Kpnl and Xbal and two bands were de-
tected in the DNA digested with BamHI (Figure 3 a),
suggesting that a single copy CaCPKI gene is present in
the chickpea genome. For Southern blot analysis of CaCPK2,
the genomic DNA was digested with EcoRI, HindlIll,
Kpnl and BamHI that do not cut the variable domain of
CaCPK1 cDNA. One band each was detected in the DNA
digested with EcoRI, Hindlll, Kpnl and two bands were
detected in the DNA digested with BamHI even though
there was no restriction site in the variable domain of
CaCPK2 cDNA probe used for hybridization (Figure 3 b).
This is because of the presence of an intronic region having
BamHI restriction site in the variable domain of CaCPK2
gene. These results suggested that only one copy of
CaCPK?2 gene is present in the genome of chickpea.

Recently, it has been demonstrated that the CPK cas-
cades play important roles in stress responses in plants.
Expression of OsCPK7, a rice CPK was induced by cold
and salinity in both shoots and roots of 10-day-old rice
seedlings®. When the OsCPK7 was overexpressed in rice,
plants showed increased tolerance to cold and salt*’. The
response of CPK gene expression to various stresses var-
ied among individual members. For example, AtCPK10 and
AtCPKI11 are involved in mediating drought and salt
stress signalling; while AtCPK30 (AtCPKl1a) is involved
in cold, salt and abscisic acid (ABA)-induced pathways’'.
Nicotiana tabacum CPKs — NtCPK2 and NtCPK3 — two
CPK genes from tobacco, are involved in mediating de-
fense and osmotic stress signalling pathways whereas
NtCPK1 mediates an array of signals including GA;, ABA,
cytokinin, wounding, fungal elicitors and salt stress*™. We
have recently reported that CaCPK1 was expressed in all
tissues examined and is induced in response to salt, fun-
gal spore and BA treatments; while CaCPK2 was almost
undetectable in flowers and fruits and is induced by de-
hydration stress, BA and GA; treatments, suggesting a
function for these CaCPK1 and CaCPK2 isoforms in the
corresponding signalling pathways’". It is worthy of men-
tion that autophosphorylation and phosphorylation of his-
tone III-S by the purified recombinant CaCPK1 and
CaCPK2 produced*® in E. coli occurred only in the pres-
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Figure 2. Sequence comparison of CaCPK1 and CaCPK2 with other plant CPKs. a, Alignment of the deduced amino-acid sequences of CaCPK1
and CaCPK2 with other plant CPK proteins. Asterisks denote positions of identical amino acids. Single or double dots represent similar amino
acids. Gaps, indicated by dashes (---) were introduced to maximize alignment. Diagnostic kinase sequences (A, B and C) and junction regions (J)
are grayed and EF-hands are boxed. The EMBL database accession numbers of CaCPK1, CaCPK2 and other plant CPKs used for alignment are as
Cicer arietinum (CaCPK1, AY312268; CaCPK2, AY312269); Oryza sativa (OsCPK2, X81394); Nicotiana tabacum (NtCPKI,
AF072908); Dacus carota (DcCPK, X56599) and Arabidopsis thaliana (AtCPK7, U31836). Sequences were aligned by ClustalW program located
at ExPasy site (http://www.expasy.ch). b, A rooted phylogenetic tree of CPK proteins illustrating the relationship between the cloned plant CPKs.
The phylogenetic tree was constructed using neighbour-joining method®’. Numbers indicate the per cent bootstrap replicates supporting the node.
Root of the tree is arbitrarily placed. CaCPK1 and CaCPK2 are highlighted by box. Accession numbers of CPK sequences used to generate the phy-
logenetic tree are as follows: A. thaliana (AtCPK1, L14771; AtCPK2, U31833; AtCPKS, U31834; AtCPK6, U31835; AtCPK7, U31836; AtCPK9,
U31751; AtCPK11, D21806; AtCPK12, U20388); Zea mays (ZmCPK1, D84408; ZmCPK2, U28376; ZmCPK10, ZMA7366); O. sativa (OsCPK1,
AF319481; OsCPK2, X81394; OsCPK11, X81393; OsCPK12, AF048691); Glycine max (GmCPK, M64987); Cucurbita pepo (CpCPK1, U90262);
Cucumis sativus (CsCPK, AY027885); Vigna radiata (VrCPK1, U08140); D. carota (DcCPK, X56599); Ipomea batatus (IbCPK, D87707);
N. tabacum (NtCPK1, AF072908); Tortula ruralis (TrCPK1, U82087); Chlamydomonas eugametos (CeCPK1, Z49233), and this work, C. arieti-
num (CaCPK1, AY312268; CaCPK2, AY312269).

follows:
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Figure 3. Genomic southern blot analyses of CaCPKI (a) and
CaCPK2 (b) genes. Aliquots (15 png) of chickpea genomic DNA were
digested with EcoRI (E), HindlIl (H), Kpnl (K), BamHI (B) and Xbal
(X), electrophoresed on 0.8% (w/v) agarose gels, transferred onto nylon
membranes and hybridized with the cDNA probes corresponding to the
N-terminal variable domain of CaCPK1 (residues 1-222) or CaCPK2
(residues 1-198). The position of DNA standards is indicated on the
left and their size is given in kb.

ence of Ca®*. It has also been demonstrated that they differ
in their kinetic and Ca®* binding properties®’. The major
challenge of the future will be to overexpress the CaCPK1
and CaCPK2 in chickpea lines to confer salt and drought
tolerance, and/or resistance to fungal pathogens in trans-
genic chickpea plants.
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Delivery of N-methyltransferase

and 118 globulin promoters of Coffea
canephora Pex Fr. by tissue
electroporation and analysis of
transformational events
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A tissue electroporation system was optimized to deliver
transgenes, and the expression of reporter gene driven
by coffee N-methyltransferase (NMT) and 11S globulin
promoters in somatic embryos of Coffea canephora
was achieved. Plant transformation vector pPCAMBIA
1301 was adopted for electroporation. Transient as well
as stable expression of uidA gene was detected after
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electroporation using field strengths of 500 V/cm, 900 pF
capacitance and 100 pg/ml of plasmid DNA. The effi-
ciency of tissue electroporation was dependent on the
type and developmental stage of the plant material.
Spermidine treatment during electroporation increased
transformation frequency twofold. Histochemical stain-
ing of GUS activity confirmed the expression of uidA
gene in somatic embryos and endosperm tissues of C.
canephora. Electroporation with pPCGB 959 (11S
globulin promoter) resulted in 32% of explants show-
ing GUS expression in endosperm tissues. The study
demonstrated the ability of these promoters to drive
the expression of the reporter gene. The results may
be helpful for using these promoters to alter the
expression of the NMT gene family through transcrip-
tional gene silencing by RNA-directed DNA methyla-
tion, and also for using 11S globulin promoter for
silencing NMT genes in a tissue-specific manner in
transgenic coffee plants.

Keywords: Coffea canephora, 115 globulin promoter,
N-methyltransferase, tissue electroporation.

COFFEE is a woody perennial crop and requires 4-5 years
to yield fruit. Coffea species contain caffeine, a purine al-
kaloid. Caffeine is known to accumulate in beans as well
as in the leaves and embryos. The caffeine biosynthesis
pathway involves the following steps, viz. xanthosine —
7-methylxanthosine — 7-methylxanthine — theobromine —
caffeine as the major route to caffeine. The methylation steps
are catalysed by N-methyltransferases (NMTs) that use S-
adenosyl-l-methionine as the methyl donor'. The cDNAs
encoding 7-methylxanthosine synthase, theobromine syn-
thases and caffeine synthase”™ have been cloned and are
found to possess close similarity. We have recently cloned
the promoter for one of the NMT genes® and demonstrated
reporter gene expression in Nicotiana tobacum. Similarly,
the promoter for the seed-specific 11S globulin gene has
been cloned®. This has opened up new avenues for devel-
oping transgenic plants with down regulation of caffeine
synthesis in a seed-specific manner. The 11S globulins are
major seed storage proteins in coffee beans. These storage
proteins are also found in low levels in somatic and
zygotic embryos of coffee’. Tissue-specific promoters
such as 118 globulin could be good candidates to silence
caffeine biosynthesis in a tissue-specific manner in the
endosperm and embryos. As a prelude to this, it is essential
to study the function of the isolated promoters in coffee
tissues, especially in somatic embryos where caffeine is
synthesized and down regulation of this pathway can be
analysed in the early stage of transgenic plant development.

Electroporation is a DNA delivery technique that utilizes
a high-intensity electric pulse to create transient pores in the
cell membrane and hence facilitates uptake of DNA. The
simplicity and efficiency of DNA delivery into plant pro-
toplasts by this technique®® has encouraged its applica-
tion for targetting intact single cells as well as whole
plant tissues'®!!. Tissue electroporation has been success-
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