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Tree-ring-width chronologies of Himalayan cedar (Cedrus
deodara) from moisture-stressed sites in Alaknanda,
Bhagirathi, Tons, Satluj (lower) and Chandra-Bhaga
river basins in western Himalaya were studied to under-
stand the basin-specific as well as synoptic-scale fea-
tures of climate change. In the past 325 years, extreme
cool and wet climate during 1734 and 1803 and extreme
hot and dry climate during 1705, 1707, 1767, 1774,
1782, 1873, 1887, 1890, 1892 and 1974, common in all
the basins, reflect synoptic-scale features. However, in
1816, extreme low growth in trees over all the basins
could have resulted due to reduced photosynthesis
caused by impaired solar radiation reaching the ground
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because of aerosol load in the stratosphere ejected by
the Tambora volcanic eruption. The cool and wet extre-
mes are more basin-specific compared to the hot and
dry ones. Basin-specific cool and wet climates are due
to strong orography-influenced variability in precipi-
tation.

Keywords: Climate change, Himalayan cedar, tree rings,
volcanic eruption.

IN mountain regions, climate varies at short distances due
to strong topographic forcing, and also the amplitude of
such changes is high at high elevations due to the relatively
greater sensitivity to climate change'”. Concerns were
raised for such a high climate variability in the mountains
and its societal relevance during the 1992 Earth Summit
at Rio de Janeiro’. In the Himalayan region, climate, espe-
cially precipitation, varies at local and mesoscale levels
owing to complicated relief, direction of ridges, degree of
slope, sunny or shady aspects of slope and forest cover®.
Instrumental weather records from the western Himala-
yan region for the past century show increasing trend in
temperature at the rate of around 0.6°C/100 years. How-
ever, no such long-term trend has been noted in precipita-
tion. The severity of temperature effect on vegetation is
moderated by precipitation, which is highly location-
specific under strong topographic influence. The rising
temperature, even if the total precipitation remains around
the long-term mean, will perturb the equilibrium state of
vegetation. The magnitude of the impact of climate
change would be relatively high at marginal ecosystem sites
where vegetation is at its threshold limit of climate. Many
of the plant species growing at upper elevation limits in
the western Himalaya have been found shifting to higher
elevations, though the rate was species- and site-specific’.
The lower limits of apple orchards in western Himalaya
have significantly extended upwards during the last few
decades of the 20th century. However, the impact of climate
change on vegetation and cropping system is expected to
vary over basins depending on the basin-specific orographic
influence on climate.

Our understanding of the local and synoptic-scale climate
features in the Himalayan region is limited due to lack of
sufficient weather records from low- and high-elevation
regions of orographically separated basins. Long-term
high-resolution proxy climate records offer valuable data
to understand climatic sensitivity of different orographi-
cally separated basins. Though a network of tree-ring
chronologies from the western Himalayan region has
been used to infer the long-term regional climate fea-
tures6’9, no attempt has been made to understand the cli-
matic features of orographically separated basins. The
overarching goal of the present study was to investigate
the specificity of climate in Alaknanda, Bhagirathi, Tons,
Satluj (henceforth used for lower Satluj basin) and Chandra-
Bhaga basins in western Himalaya using high-resolution
tree-ring records.
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Tree-ring-width chronologies of Himalayan cedar pre-
pared from tree-ring samples in the moisture stressed
sites at Alaknanda, Bhagirathi, Tons, Satluj and Chandra-
Bhaga river basins in western Himalaya (Figure 1), col-
lected during various field trips in western Himalaya from
1996 to 2005, were used in the present study. Details
about the collection of tree-ring materials, methodology
used in dating of tree-ring sequences in samples and
chronology preparation have been described elsewhere®”.
Computer programs COFECHA'® and ARSTAN'""? were
used for verification of dating and chronology preparation
respectively. Tree-ring measurements were standardized
to remove the biological growth trend as well as other
low-frequency variations due to stand dynamics features
and maximize the common signal among individual tree-
ring chronologies. For this, double detrending using
negative exponential or linear growth curves fitted by
least squares and cubic spline with two-third of the series
length and 50% frequency response cut-off, were applied.
Residual chronologies containing high-frequency varia-
tions in series were taken for further analyses. Chronology
details are given in Table 1. The expressed population
signal (eps), which considers inter-series correlation and
sample size to estimate how well a finite number of samples
represent the theoretical population average'’, exceeding
the threshold value of 0.85 was used to select the chro-
nology length for further studies. The common chronol-
ogy period with sufficient sample replication (eps > 0.85)
in the respective basins was selected for principal-
component analyses. The principal components of the
series from a basin represent per cent common variance in
the chronologies used. The first principal component de-
rived from chronologies in the respective basins showing
per cent common variance always higher than 90% repre-
sents common forcing on tree growth, i.e. climate. The
principal components from different basins (1675-1996,
1675-1999, 1675-2002, 1675-2005 and 1675-2003) plotted
together are shown in Figure 2. Positive scores between
1, 2 and >2 and negative scores between —1, -2 and <-2
standard deviation were considered as extreme and very
extreme growth years (Figure 3).

The Alaknanda, Bhagirathi and Tons basins on the
southern slope of the Himalayan divide are under the in-
fluence of a strong southwest summer monsoon and receive
summer rains from the mid-June to mid-September. Win-
ter depressions from January to March cause snowfall.
April and May are marked by thundershowers and hail-
storms. Usually in May and during the first half of June,
before the break of the monsoon, convectional rains occur
commonly in the afternoon every third to fourth day often
at high elevations'*. The average annual precipitation in
this region as reflected from Shimla weather station is
around 1460 mm. The lower Satluj basin receives summer
monsoon, whereas upper Satluj basin falls under the mon-
soon shadow zone. Tree-ring sites used in the present
study are in the lower Satluj basin which experiences feeble
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Figure 1.

Map showing location of tree-ring sites. Alaknanda basin: 1, Juma; 2, Kosa; 3, Tolma;

Bhagirathi basin: 4, Dharali III; 5, Dharali IV; 6, Gangotri IV; 7, Jangla; 8, Mukhaba; Tons basin: 9,
Balcha; 10, Devata; Satluj basin: 11, Roghi; 12, Purbani; 13, Ralli; Chandra-Bhaga basin: 14,

Madgram; 15, Ratoli.

Table 1. Ring-width chronologies of Himalayan cedar from different western Himalayan sites used in study
Chronology Chronology cut-off year
Basin Site Altitude (m asl) length (years) with eps >0.85
Alaknanda Juma 2770 1339-1996 AD 1590
Kosa 3040 1560-1996 AD 1585
Tolma 2630 1339-1996 AD 1390
Bhagirathi Dharali III 2790 1558-1999 AD 1610
Dharali IV 3060 1560-1999 AD 1645
Gangotri IV 3200 1584-1999 AD 1640
Jangla 2980 1086-2002 AD 1315
Mukhaba III 2820 1558-1999 AD 1610
Tons Balcha 2630 1274-2002 AD 1355
Devata 2770 1491-2002 AD 1675
Satluj Roghi 2900 1389-2005 AD 1440
Purbani 3000 1286-2005 AD 1415
Ralli 2700 1456-2005 AD 1510
Chandra-Bhaga Madgram 2650 1276-2003 AD 1430
Ratoli 2700 1217-2003 AD 1470

summer monsoon. Weather records for Kalpa in Kinnaur
(lower Satluj basin; AD 1951-2004) show around 584 mm
annual precipitation. The Chandra-Bhaga valley falls in
the trans Himalayan region with very little summer monsoon

1426

rainfall. Most of the precipitation occurs in winter. Pre-
cipitation records for Keylong in Chandra-Bhaga basin
show around 648 mm of annual precipitation. Climate
reconstruction for the above specific basins could not be

CURRENT SCIENCE, VOL. 92, NO. 10, 25 MAY 2007



RESEARCH COMMUNICATIONS

attempted due to lack of sufficient weather records re-
quired to calibrate tree-ring data.

Previous studies on the relationship between tree-ring-
width chronologies prepared from various moisture-stressed
sites under the summer monsoon zone in the western Hima-
laya have indicated that growth of Himalayan cedar,
Cedrus deodara (Roxb.) D. Don is favoured by cool and
wet climate during non-monsoon months, the relationship
being stronger during premonsoon’”'’. However, the
chronologies from Chandra-Bhaga basin showed direct
relationship with precipitation over the full dendrochro-
nological year (October of the previous year to September
of the current year)'. Therefore, positive scores in first
principal components from different basins reflect cool
and wet climate whereas negative scores reflect warm
and dry climate during the respective years. Annual fluc-
tuations in principal components in basins on the south-
ern slope of the Himalaya under the influence of summer
monsoon are strongly correlated, except for the Tons basin
which showed weaker relationship with others (Table 2).
However, in the trans Himalayan region, the Chandra-Bhaga
basin stands out for its weak relationship with other basins,
the weakest being with Tons basin. The cool and wet years
are far less common among the basins compared to the
warm and dry years. Poor coherence in cool and wet years
in different basins shows that the precipitation is strongly
affected by orographic conditions specific to basins. The
high growth scores recorded during 1734 and 1803 indicating
cool and wet climate, and low growth scores during 1705,
1707, 1767, 1774, 1782, 1873, 1887, 1890, 1892 and 1974
indicating warm and dry climate represent synoptic-scale
features. However, the cause of extreme growth reduction
in trees over all the basins during 1815 and 1816 coincid-
ing with the Tambora eruption deserves special mention
here. Growth rings of 1815 and 1816 in Himalayan cedar
trees over all the basins were narrow. In many cases, the
1816 ring was missing in tree samples and occasionally

Score

Figure 2. Principal component series (derived from tree-ring-width
chronologies in the respective sites). Horizontal lines above and below
zero value are one standard deviation.
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had traumatic resin ducts in the late wood portion, both
features indicating extreme environmental stress on trees.
It is hypothesized that extreme low growth in trees in
1816 over all the basins could have resulted due to re-
duced photosynthesis caused by impaired solar radiation
reaching the ground because of aerosol load in the strato-
sphere ejected by the Tambora volcanic eruption, and not
hot and dry weather as implicit from previous tree growth
and climate relationship studies® !>,

The Tambora volcano in Indonesia erupted on 10 April
1815, sending a massive cloud of aerosols into the strato-
sphere. The volcanic soot drifted around the earth and re-
duced solar radiation reaching the ground the following
year, i.e. 1816, causing dramatic weather changes. Vol-
canic sulphates in ice cores from Greenland associated
with the Tambora eruption'’ endorse high explosivity of
the eruption. The year 1816, known as the ‘year without
summer’ in Europe, experienced extreme weather condi-
tions in the northern hemisphere due to impaired solar radia-
tion reaching the ground'®. India had crop failure following
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Figure 3. Principal components (above one standard deviation) from
different basins plotted to show years with extreme growth under cool
and wet ((a) positive scores), and hot and dry ((b) negative scores).
Horizontal lines are one and two standard deviations.
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Table 2. Correlation between principal component series from different basins

Period Bhagirathi Tons Satluj Chandra-Bhaga
1675-1996 Alaknanda 0.83 (0.0001) 0.57 (0.0001) 0.71 (0.0001) 0.30 (0.0001)
1675-1699 0.86 (0.0001) 0.54 (0.0057) 0.84 (0.0001) 0.27 (0.2001)
1700-1749 0.78 (0.0001) 0.59 (0.0001) 0.66 (0.0001) 0.28 (0.047)
1750-1799 0.84 (0.0001) 0.68 (0.0001) 0.67 (0.0001) 0.37 (0.008)
1800-1849 0.88 (0.0001) 0.58 (0.0001) 0.79 (0.0001) 0.24 (0.097)
1850-1899 0.87 (0.0001) 0.63 (0.0001) 0.80 (0.0001) 0.45 (0.0011)
1900-1949 0.85 (0.0001) 0.44 (0.0012) 0.67 (0.0001) 0.25 (0.0786)
1950-1996 0.78 (0.0001) 0.50 (0.0003) 0.70 (0.0001) 0.26 (0.0709)
1675-1996 Bhagirathi 1.00 (0.0) 0.63 (0.0001) 0.84 (0.0001) 0.44 (0.0001)
1675-1699 0.63 (0.0007) 0.84 (0.0001) 0.27 (0.1864)
1700-1749 0.71 (0.0001) 0.85 (0.0001) 0.45 (0.0011)
1750-1799 0.64 (0.0001) 0.82 (0.0001) 0.53 (0.0001)
1800-1849 0.65 (0.0001) 0.92 (0.0001) 0.34 (0.0158)
1850-1899 0.65 (0.0001) 0.87 (0.0001) 0.55 (0.0001)
1900-1949 0.47 (0.0006) 0.80 (0.0001) 0.343 (0.0146)
1950-1996 0.64 (0.0001) 0.90 (0.0001) 0.48 (0.0006)
1675-1996 Tons 1.00 (0.0) 0.57 (0.0001) 0.22 (0.0001)
1675-1699 0.45 (0.0232) 0.033 (0.8746)
1700-1749 0.68 (0.0001) 0.34 (0.0168)
1750-1799 0.59 (0.0001) 0.25 (0.0773)
1800-1849 0.61 (0.0001) 0.08 (0.5788)
1850-1899 0.67 (0.0001) 0.34 (0.0154)
1900-1949 0.40 (0.0035) 0.015 (0.919)
1950-1996 0.58 (0.0001) 0.23 (0.1257)
1675-1996 Satluj 1.00 (0.0) 0.50 (0.0001)
1675-1699 0.25(0.2307)
1700-1749 0.43 (0.0017)
1750-1799 0.59 (0.0001)
1800-1849 0.32 (0.0218)
1850-1899 0.58 (0.0001)
1900-1949 0.56 (0.0001)
1950-1996 0.53 (0.0001)

the Tambora eruption, but the cause for it is not yet well
ascertained. On the basis of the established tree-growth
and climate (temperature and precipitation) calibrations
using tree-ring-width chronologies developed from vari-
ous moisture-stressed sites in western HjmalayaG’”S, ex-
tremely low growth in Himalayan cedar trees during 1816
could be assumed to be caused by warm and dry climate.
However, contrary to this, tree-ring reconstructions from
Nepal (Central) Himalaya'® showed cool conditions dur-
ing 1816. Considering the large-scale climatic effect of
the Tambora eruption as reported from elsewhere’®?', it is
assumed that similar climatic conditions over the two re-
gions of the Himalaya could have prevailed during 1816.
However, records of contrasting temperature anomalies in
the western and central parts of the Himalaya in 1816 in-
ferred from tree rings could only be possible if the limit-
ing factor affecting the growth of trees changed in either
of the two regions. Ash deposits recognized in sediment
cores of Karachi in northeastern Arabian Sea related to
the Tambora eruption®’, indicate heavy aerosol load in the
atmosphere over the Indian subcontinent. The thick aerosol
cloud over the region could have hindered the solar radia-
tion from reaching the ground. The reduced solar radia-
tion caused by the Tambora eruption affecting photo-

1428

synthesis might have led to poor growth of Himalayan
cedar at moisture-stressed sites in the western Himalaya.
However, this needs to be tested using other high-
resolution climate proxies. Studies have shown that the
concentration of §°C in tree rings could be related to
changes in light level***, The decreasing solar irradiance
leads to low photosynthetic activity and increased inter-
cellular CO, concentration, resulting in a relative deple-
tion in &'>C. Therefore, the concentration of §°C in tree
rings of Himalayan cedar from the western Himalaya,
where tree growth is limited by moisture stress accentu-
ated by higher temperature, could provide valuable infor-
mation to verify extreme climatic events such as that of
1816. Such records gleaned from multi-proxies should
provide valuable clues to understand the relative sensitivity
of the region to climate forcing, such as volcanic eruption.

It has been noted that contrasting climatic extremes often
occurred in different basins and more frequently in Tons
and Chandra-Bhaga during the early part of the 20th century
(Figure 3). Contrary to the pattern noted in the Tons basin,
the number of extreme cool and wet years increased in the
Satluj and Chandra-Bhaga basins during the latter part of
the 20th century compared to the early part of the century.
Percentile distribution of scores in principal component

CURRENT SCIENCE, VOL. 92, NO. 10, 25 MAY 2007
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series from different basins showed that Satluj and Chandra-
Bhaga are relatively prone to extreme hot and dry cli-
matic events relative to other basins. The five percentile
data distribution limits showed that the magnitude of hot
and dry climate extremes gradually increased in the Satluj
basin contrary to the relative decrease in Alaknanda, Bhagi-
rathi and Tons basins over around the past three centuries.
However, no such shift was noticeable in the magnitude of
cool and wet extremities in the basins, except Satluj
where it increased during the latter part of the 20th century.
Such changing pattern in climatic conditions, as inferred
from tree rings is bound to have significant impact on bio-
diversity and agriculture practices over the specific regions.

Tree-ring-width chronologies of Himalayan cedar pre-
pared from moisture-stressed sites in Alaknanda, Bhagi-
rathi, Tons, Satluj and Chandra-Bhaga river basins were
analysed to understand basin specificity in climate change
during the past 325 years. The study revealed cool and
wet climatic extremes to be more basin-specific compared
to hot and dry ones, largely due to strong orographic control
on precipitation. The cool and wet extremes do not show
any pattern, except in Tons and Bhagirathi basins where
the magnitude gradually decreased towards the latter part
of the 20th century. Alaknanda, Satluj and Chandra-Bhaga
basins experienced higher magnitude cool and wet ex-
tremes during the latter part of the 20th century. Such a
divergent pattern of climate extremes in different basins
due to anthropogenic impact or subtle change in climate will
have significant impact on biodiversity and socio-economy
of the region.

Extreme hot and dry climate during 1816 in the western
Himalaya as inferred from tree rings when large-scale cooling
coinciding with the Tambora eruption was reported from
other regions, needs to be verified using additional proxies
like 6"°C. Such multiproxy cross-validations would help
in arriving at valid conclusions required for understanding
the relative importance of volcanic forcing on climate.
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