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Physico-chemical and bacterial profiling of soils for describing a
land-degradation gradient

Soil variables often show different res-
ponse patterns to the same impact, making
differences in soil quality a multidimen-
sional property. Thus, analysing multi-
variate soil profiles often shows particular
aspects of soil quality variation', and gives
integrative soil quality measures such as
a regression model®. Physico-chemical
profiling of soils is relatively well esta-
blished, while in recent years, biological
profiling of soils has been popular3. The
Biolog method* is used for biological
profiling of soils, and provides community-
level physiological profiles of soil
bacterial communities. Profiling soils
with the Biolog method may offer datasets
different from those of the physico-chemical
dataset’. We compared multivariate soil
datasets provided by physico-chemical
measurements and Biolog applroaches‘"6
in describing a land-degradation gradient.
The Sakaerat Environmental Research
Station, Thailand has dry evergreen forest
(DEF, original vegetation), dry deciduous
forest (DDF, moderately disturbed) and
plantation plots as the major vegetative
types. The vegetative types are distributed
in a mosaic pattern in the northeastern part
of the site. Bare ground (BG, most de-
graded), having no vegetation as a result
of past human activities, is also scattered
in the mosaic. DEF, DDF and BG soils
were sampled on 4 November 2002, re-
garding vegetative mosaic as a completely
randomized design7. At each sampling
point, six soil cores were sampled to a
depth of 5.1 cm, mixed in a plastic bag to
make a composite, passed through a 2 mm
sieve and then used for physico—chemical7
and bacterial profiling. Values of a soil
fertility index (SFI)8 were calculated to
quantify the intensity of land degradation.
The bacterial community was profiled
with three Biolog EcoPlates. The above-
mentioned composite sample, sieved and
kept in a plastic bag at 5°C, was used
72 h after sampling. Five grams of the
soil sample was suspended in 45 ml of
sterilized water and reciprocally shaken
at room temperature for 30 min at 120 rpm.
The suspension was centrifuged at 1000 g
for 5 min, decanted, and the pellet was
re-suspended in 45 ml of sterilized water.
Centrifugation and suspension were re-
peated twice. The soil suspension was
left still for a minute, and 10 ml of the
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uppermost phase was diluted 40-fold
with sterilized water. This suspension was
used to inoculate the Biolog EcoPlates at
arate of 0.1 ml/well. The plates were in-
cubated at 28°C in the dark and absorb-
ance at 405 nm was read using an ELISA
plate-reader at 5-16 h intervals for 8
days. During incubation, the plates were
wrapped in a plastic film to avoid desicca-
tion. Values for the above-mentioned three
pseudo-replicates were averaged and used
for the following statistical analyses.

All the statistical analyses were per-
formed using SPSS 10.0.1 (SPSS Inc.).
One-way analysis of variance was per-
formed to test the effect of the land deg-
radation on each soil physico-chemical
characteristic. Dunnett T3 7-test was cho-
sen as the post-hoc test. Kinetic parame-
ters® were determined applying the
criteria described by Mondini and In-
sam’. As a result, the number of vari-
ables was reduced from 31 to 22. The
calculated values were ratio transformed;
each value was divided by the sum of all
the 22 values for the sample. The 22
variables were used for the calculation of
average well colour development (AWCD)".
To compare the datasets in discriminating
among the soils, the 22 ratio-transformed
values were used for discriminant analysis
of the community-level physiological
profiles. Raw soil physico-chemical data
were used for discriminant analysis of soil
physico-chemical profiles. The putting
independents-together method was chosen.
Wilk’s lambda statistic was calculated to
quantify the difference among the soils™.
Principal component analysis was per-
formed to extract principal components
from each dataset. Then, multiple regres-
sion analysis between the SFI values and
the principal component scores was per-
formed to obtain regression models for
describing the land-degradation gradient.
The stepwise method at the default crite-
ria (P = 0.05 for inclusion and 0.10 for
removal) was chosen. Simple linear re-
gression analysis was performed to ex-
plore relationships between the scores on
the significant  principal component11
(eigenvalue > 1) and the physico-chemical
characteristics.

Most soil variables significantly reflected
land degradation (Table 1). The DEF soil
had the highest SFI value, followed by

the DDF soil. The BG soil had the lowest
SFI value, indicating that this soil was
the most severely degraded. Land degra-
dation represented by the vegetative
types was a significant source of varia-
tion in SFI value.

AWCD values for the BG, DDF and
DEF soils exceeded 1.2 after incubation
periods of approximately 145, 126 and
122 h respectively, and then started to
converge. The BG soil had the poorest
total physiological activitylz. Datasets for
AWCD values of 0.6 and 1.2 were used as
those at rapid and pre-convergence col-
our developmental time points.

Discriminant score plots are shown in
Figure 1. The 1.2 AWCD and the physico-
chemical datasets were the best for dis-
criminating among the soils, regarding
the low lambda values and the high sig-
nificance. Differences among the soils
were not clearly shown while analysing the
datasets for parameters K and S. While
analysing the datasets for parameter K, a
DDF sample was misclassified as a BG
sample, and for parameter S, a DEF sam-
ple was misclassified as a DDF sample.
Analysing the other datasets resulted in
no misclassification.

The first principal component derived
from the physico-chemical data explained
a large part of the variation, while that
derived from the bacterial datasets ex-
plained smaller parts of the variations
(Table 2). Significant principal compo-
nents were: physico-chemical characteris-
tics, 4; 0.6 AWCD, 5; 1.2 AWCD, 5;
parameter K, 7; parameter R, 6, and para-
meter S, 5, suggesting more complex
structures of the bacterial datasets.

Some minor principal components sig-
nificantly correlated with the physico-
chemical characteristics. For example, the
third principal component derived from
the 1.2 AWCD dataset significantly corre-
lated with pH, exchangeable Al and H
content and base saturation rate
(P £0.01). The first principal component
derived from the bacterial datasets corre-
lated with fewer physico-chemical chara-
cteristics than that derived from the
physico-chemical dataset.

Scores on the significant principal com-
ponents were used for multiple regression
analysis. The following models were pro-
vided:
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Physico-chemical,
SFI=15.1+7.25xPCl + 1.42 %
PC2 + 0.95 x PC3, R = 0.979,

P =0.000, (1)
0.6 AWCD,
SFI = 15.1 — 3.99 x PC4,
R=0.524, P=0.018 2)
1.2 AWCD,
SFI=15.1 - 3.58 x PC3,
R=0.621, P=0.016, 3)

Parameter R,
SFI=15.1-3.62 xPC2, R =0.475,
P=10.034, 4

where PCrn indicates a score on the princi-
pal component. No significant models were
provided by analysing the datasets for
parameters K and S. The physico-chemical
dataset was the best for describing land-
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Figure 1.

degradation gradient. Models for bacte-
rial datasets did not contain the first
principal component scores.

We attribute the suitability of the
physico-chemical dataset for describing
land-degradation gradient to the simple
data structure (Tables 1 and 2). The simpli-
city was contributed by most of the physico-
chemical characteristics having linear
correlations with the first principal com-
ponent (Table 2). Structures of the bacte-
rial datasets were more complex than
those of the physico-chemical data. The
first principal component derived from
the bacterial datasets was less significant
than that from the physico-chemical data-
set. Soil biological variables often have
nonlinear response patterns to an abiotic

environmental changeB. Furthermore,
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multiple abiotic environmental changes
affect a single soil biological variable,
increasing its nonlinearitys. The nonlinear
relationships were thought to contribute
to the complex structures of the bacterial
datasets.

Often, minor parts of a variation of
multivariate soil profile explain a gradient
of interest'*". This was especially an-
nounced by the third principal compo-
nent for the 1.2 AWCD dataset (Table 2).
The third principal component explained
the land-degradation gradient (eq. (3)),
while the first and second principal com-
ponents slightly correlated with the land-
degradation gradient. Thus, compared with
the physico-chemical dataset, fewer dif-
ferences among the sample groups should
be shown in the principal component
score plot with the first and second prin-
cipal components derived from the
1.2 AWCD dataset (Table 2). On the
other hand, variation explained by the
third principal component should have
contributed to clear discrimination ac-
cording to Wilk’s lambda statistics, of which
computation involves all parts of the
variation (Figure 1). It is advantageous to
find minor but meaningful parts of variation
in data, as well as the most significant ones.

The altered community-level physio-
logical profiles were the results of defor-
estation and the subsequent land degra-
dation. The physico-chemical changes
were also the results, while the relation-
ships between the physico-chemical and
the bacterial changes should be compli-
cated. The hypothesis proposed by Oline
and Grant® has its base on the assumption
that abiotic environmental factors affect
biological variables. The above results
supported the hypothesis, and hence the
cause and effect relationships seemed to
be more influential than the reversed re-
lationships. After the DEF was cleared
and the soil was disturbed, the soil bacte-
rial community was exposed to stress;
high acidityls, high tempelrature17 because
of the direct solar radiation and dlryness18
that can alter the original community-level
physiological profile.

It is thought to be advantageous to apply
the Biolog approaches together with the
soil physico-chemical measurements. In an
area, a unique integrative measure was
provided surveying communities of plants
that belong to a taxonomic group. The
measure differed from those of other
plant taxonomic groups in the same area’”.
Similar independence was reported among
invertebrate taxonomic glroups20 and soil
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Table 2. Soil physico-chemical characteristics that linearly correlated with significant principal components (eigenvalue > 1). Underlined physico-
chemical characteristics had negative correlations with the principal component
Principal components extracted
from the dataset Significant physico-chemical characteristics’
Principal Variation
Dataset component’ explained (%) Eigenvalue P<0.01 0.01 <P<0.01 0.05<P<0.10
Physicochemical 1 61.5 11.7 Moisture, BD, sand, pH, Clay
EC, OM, TN, TC, P, K,
Ca, Mg, CEC, AL H, BS
2 12.9 2.44 Clay, silt, sand P
3 6.0 1.13 Na
4 5.6 1.07 Silt H, BS
0.6 AWCD 1 42.9 6.86 Silt Clay
2 16.9 2.70 pH, EC. K, Ca, H, BS Moisture, TC, Mg, CEC, Al
3 11.5 1.84 Na
4 7.7 1.23 K, Ca, CEC oM, TC, BS Moisture, silt, P, Mg
1.2 AWCD 1 31.9 5.11 BD Moisture EC, OM
2 16.7 2.67 Clay, silt
3 14.9 2.38 pH, AL H, BS Sand, Mg EC,Ca
4 8.2 1.31 Moisture
Parameter K 1 27.4 4.38 EC, Al
2 13.9 2.23
3 12.2 1.96 P
4 10.8 1.73 K, Ca
5 7.7 1.23 Sand, OM, Ca, CEC BD, clay, EC, TN, TC, Mg
6 7.3 1.17 Silt Clay Mg, CEC
Parameter R 1 21.1 3.38 Clay, silt
2 14.1 2.25 EC Moisture, BD, pH, TN, OM, K, Na, CEC
TC. Mg, AL H. BS
6 7.7 1.23 Clay
Parameter S 1 33.9 5.42
2 14.6 2.33 H Al, clay Moisture, sand
4 9.3 1.48 EC Moisture
5 7.1 1.14 Clay, silt

"Only the first and second principal components and those that had significant linear relationships with any of the physico-chemical characteristics

were included.

iBD, Bulk density; EC, Electrical conductivity; OM, Organic matter; TN, Total nitrogen; TC, Total carbon; P, Available phosphorus; CEC, Cation
exchange capacity, and BS, Base saturation. K, Ca, Mg, Na indicate exchangeable bases, and H and Al exchangeable acidity.

microbial aspects®'. It is difficult to pre-
dict which dataset would be the best for
describing a gradient of interest. There-
fore, we cannot but rely on an empirical
approach to obtain such an integrative
measure. The Biolog approaches and the
physico-chemical measurements offer
multiple datasets. Then, the current ap-
proaches may provide integrative measures
for predicting a result, for which there
are no experimental data. These empirical
approaches for monitoring soil quality
are expected to contribute to land conser-
vation and management practices.
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Identification of molecular markers linked with differential flowering
behaviour of mangoes in Andaman and Nicobar Islands

Genetic differences within and between
geographic populations of an ecosystem
are likely to be defined by the population-
fluxing pattern as influenced by various
ecological factors in the immediate past
and historical pressure on the genome.
The Andaman and Nicobar Islands in the
Bay of Bengal (lat. 6°45'-13°41’N and
long. 92°12°-93°51’E) comprise over
572 islands and rocks'. Due to the long
history of cultivation in these islands,
many cultivars of mango from both
northern and southern India are known to
exist. The varieties from northern India
failed to flower in the absence of low
temperature and low humidity. However,
the varieties from southern India estab-
lished due to their coincidence of the
climatic requirement. Open pollination of
these varieties resulted in many clones
with differential flowering pattern due to
the introgression of genes during
hybridization. Most of these clones ex-
hibited an erratic habit of bearing round
the year. Flower bud differentiation takes
place during May—June, August—Septem-
ber and November—December. Some
clones exhibited multiple flowering while
others though morphologically similar to
the multiflowering clones, flowered only
once’.

In the existing context, a systematic
and concerted effort to find the cause of
differential flowering was found to be
important. About 30 clones comprising
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20 single-flowering and 10 multiple-
flowering types were selected. Among
them, three multiple-flowering local types
(GL 1, GL 2 and GL 3), four parental
single-flowering lines consisting of Nee-
lam, Malgoa, Bangalora and Bangana-
palli and three local single-flowering types
(HL 4, HL. 6 and HL 12) were selected
for intensive screening.

In the present study we report that the
morphological character does not exhibit
any variation between parental and open-
pollinated clones. Qualitative and en-
zyme activities of these clones showed
significant variation between them. This
confirmed the influence of environment
on flowering behaviour. However, the
role of genic action on flowering cannot
be ruled out. Thus to identify the influ-
ence of genes in flowering and molecular
markers linked with the gene, variation
at DNA level was analysed. Availability
of reliable polymorphic markers often
limits accurate estimation of genetic
variation among individual populations’.
Usual DNA-based techniques such as
RFLP through Southern hybridization
and use of micro-satellites are expensive;
also use of latter required DNA sequence
information®. PCR-based RAPD approach
has been a handy and convenient alterna-
tive technique for investigation on genome
mappings’ﬁ. Genomic DNA was extracted
from semi-mature leaves (1 g) by a
modified CTAB method and purified by

chloroform-isoamyl alcohol and RNAse
treatment. In order to make a better rep-
resentation of each clone, equal amount
of DNA of 20 samples of each clone was
pooled and the resulting bulked DNA
samples were used for PCR-RAPD
analysis. Quantified DNA was diluted to
20-40 ng/pl used for PCR—-RAPD analy-
sis. A set of 50 random decamer primers
were selected from OPB, OPC, OPE, OPF,
OPQ and OPX obtained from Bangalore
Genei Pvt Ltd, Bangalore. Amplification
was performed in 25 pl reaction mixture
consisting of 40 ng genomic DNA, 10X
reaction buffer with MgCl, 15 mM, 10 mM
each of DATP, DCTP, DGTP and DTTP,
0.2 mM primer and 0.6U Taq polymerase
(Bangalore Genei Pvt Ltd). PCR amplifi-
cation was carried out on thermal cycler
well blocks (MJ Research Inc., USA) in
0.2 ml micro-centrifuge tubes. The proc-
ess was started with a 4 min initial dena-
turation at 94°C followed by 45 cycles of
1 min at 94°C for denaturation, 1 min at
37°C for annealing, 2 min at 72°C for
extension and ended with a final 10 min
extension at 72°C. Amplification products
were maintained at 4°C until electropho-
resis.

The reaction product was resolved by
electrophoresis in a 1.5% agarose gel us-
ing 1x TBE buffer at 8 v/em for 3 h. A1 kb
ladder (Bangalore Genei Pvt Ltd). All the
50 primers were tested at least twice for
reproducibility of banding pattern and
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