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The present study was undertaken to test the stability
of a spectral mixture modelling method by applying
the model to produce land-cover maps of coconut in
Kasaragod district, Kerala. Classification results from
applying the Spectral Mixture Analysis (SMA) were
assessed by comparison with ground-truth data. SMA
was performed and evaluated based on Landsat-7
ETM* (Enhanced Thematic Mapper Plus) data. Land-
sat-7 ETM" was available at 30 m resolution with six
spectral bands (excluding the panchromatic band and
thermal band). The Landsat-7 ETM" scene used in
this study was acquired on 8 August 2000 from path
135, row 21. The scene was a level-2 product and was
radiometrically and geometrically corrected (system-
atic) and resampled to give 25 m resolution. The
commercial image processing software, IDRISI32 was
used here for data visualization. The procedure used
in this study was based on a linear mixture model to
derive continuous fields of coconut, road, laterite out-
crops, construction, arecanut and cloud. SMA was
done on DN values and corresponding radiance values
of the satellite imagery. The accuracy of endmember
fraction was estimated as the mean of the percentage
absolute difference between actual and modelled esti-
mates. The subpixel accuracy achieved for the coconut
land-cover was 87 % using SMA of DN values, while it
was 93% for SMA of radiance values.

Keywords: Coconut, remote sensing, spectral mixture
analysis, subpixel classification.

IN general, remote sensing provides important coverage,
mapping and classification of land-cover features, such as
vegetation, soil, water and forests. A chief use of re-
motely sensed data is to produce a classification map of
the identifiable or meaningful features or classes of land-
cover types in a scene'. As a result, the chief product is a
thematic map with themes such as land use, geology and
vegetation types. In the field of remote sensing, image
classification is a process in which pixels or the basic
units of an image are assigned to classes. By comparing
pixels to one another and to those of known identity, it is
possible to assemble groups of similar pixels into classes
that match the informational categories of interest to users
of remotely sensed data. Numerous methods of image
classification exist and classification has formed an impor-
tant part of not only remote sensing, but also of the fields
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of image analysis and pattern recognition. In some in-
stances, the classification itself may form the object of the
analysis and serve as the final product. In other instances, the
classification may form only an intermediate step in more
elaborate analyses, such as land-degradation studies,
process studies, landscape modelling, coastal zone mana-
gement, resource management and other environment-
monitoring applications. Therefore, image classification
forms an important tool for examining digital images.
Accordingly, the selection of which classification tech-
nique to employ can have substantial effect on the results
of whether the classification is used as a final product or
as one of several analytical procedures applied to derive
information from an image for further analyses.

Image classification is defined as the process of creating
thematic maps from satellite imagery”. Extraction of the-
matic information from remotely sensed images into the
form of a thematic map is a key area of research into the
applications of remote-sensing data. By definition, a the-
matic map is an informational representation of an image,
which conveys information regarding the spatial distribu-
tion of a particular theme®. Themes may be as diversified
as their areas of interest. Examples of themes include
soil, vegetation, water depth and atmosphere. The objec-
tive of image classification is to classify each pixel of an
image into land-cover categories. In the case of crisp or
hard classification, each pixel is assigned to only one class.
However, in fuzzy or soft classification, a pixel is associ-
ated with many land-cover classes. In general, classifica-
tion techniques may be categorized by the training
process on which they are based (supervized or unsuper-
vized) or on the basis of the underlying theoretical model
(parametric or non-parametric). The term classifier refers
loosely to a computer program that implements a specific
procedure for image classification. Many classification
strategies have been devised over the years and from
these alternatives, the analyst must select the classifier
that will best serve the task or application at hand. The
optimal classifier depends on the situation at hand since
characteristics of each image and the circumstances for
each study vary greatly. Therefore, it is imperative that
the spatial analyst understands the alternative strategies
available for image classification in order to select the
most appropriate classifier for a specific task.

An alternative approach is to use a mixed pixel method
or spectral mixture analysis (SMA). This method recognizes
that a single pixel is typically made up of a number of
varied spectral types (i.e. soil, water, vegetation)*’. In ef-
fect, SMA is a technique used to measure the percentage
of spectra for each land-cover type in a single pixel. In
previous studies, SMA has been successfully used to
classify successional forest types and forest types of
varying carbon-sink strengths®. The SMA process enables
the classification of different forest types, although it still
has difficulties in classifying species type and age class
with confidence. Using ground-based data is especially
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useful with respect to increasing the accuracy of such
classifications.

SMA is based on the assumption that the reflectance
spectrum derived from an air- or space-borne sensor can
be deconvolved into a linear mixture of the spectra of dif-
ferent ground components, frequently referred to as spectral
endmembers’. Various methods of SMA have been devel-
oped to improve the classification of mixed pixels and to
detect and identify subpixel components and their propor-
tions. Most of the techniques have employed a linear
mixing approach®’. Linear mixing refers to additive
combinations of several diverse materials that occur in
patterns too fine to be resolved by the sensors.

The objective of this study was to test the stability of a
spectral mixture modelling method by applying the model
to produce land-cover maps of coconut in the study area.
Classification results from applying the spectral mixture
model were assessed by comparison with ground-truth data.
The SMA was performed and evaluated based on Land-
sat-7 ETM* data.

The study area is part of Kasaragod district, Kerala.
Landsat-7 ETM* was available at 30 m resolution with
six spectral bands (excluding the panchromatic band and
thermal band) (1: 0.45-0.52 um; 2: 0.53-0.61 um; 3: 0.63—
0.69 um; 4: 0.78-0.90 um; 5: 1.55-1.75 pm; 7: 2.09-
2.35 um). The Landsat-7 ETM" scene used in this study
was acquired on 8§ August 2000 from path 135, row 21.
The scene was a level-2 product and was radiometrically
and geometrically corrected (systematic) and resampled
to give 25 m resolution of Survey of India toposheet
number 48L/15 and 48P/3. The resulting product is free
from distortions related to the sensor (e.g. jitter, view-angle
effect), satellite (e.g. attitude deviations from nominal),
and earth (e.g. rotation, curvature).

The linear mixture model assumes that as long as the
radiation from component patches remains separate until
it reaches the sensor, it is possible to estimate proportions
of component surfaces from the observed pixel brightness.

In effect, with a known number of endmembers and
known spectra of each pure component, the observed pixel
value in any spectral band is modelled by a linear combina-
tion of the spectral response of a component within the
pixel.

The linear mixture model was applied with six end-
members or continuous fields to be estimated for each pixel
of a six-band Landsat image; the mixture model becomes:

DN = (Ra1 X Fo) + (Rpy X Fp) + (Rey X ) + (Ray X Fp) +
(Roy X Fo) + (Rpy X Fr) + [(Rao X Fo) + (Rpo X Fp) + (Ra X
FO+ RpXFp)+ R X Fo)+ (Rpy X Fp) + [(Ra3 X Fy) +
(Rp3 X Fp) + (Res X Fo) + (Rgs X Fg) + (Res X F,) + (Rp3 X
Fr) + [(Raa X o) + (Rpa X Fp) + (Rea X Fo) + (R X Fg) +
(Rea X Fo) + (Rpg X Fr) + [(Ras X Fa) + (Rps X Fp) + (Res X
F)+ Ras X Fg)+ (Res X Fo) + (Rps X Fr) + [(Rag X Fo) +
(Rp7 X Fp) + (Rey X Fo) + (Rgy X Fg) + (Re7 X Fo) + (Rp7 X
Fy)
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where DN is the spectral reflectance of a pixel in the
Landsat 7 band composite image, R;; is the known DN or
spectral reflectance or endmember values for coconut,
road, laterite outcrops, construction, arecanut and cloud.
The six bands of the Landsat scene were represented by
the parameter i and each of the six end-members was rep-
resented by factor j. F; was the fraction coefficient of the
Jjth component within the pixel or the fractional cover for
coconut, road, laterite outcrops, construction, arecanut
and cloud.

Pure features in a mixed pixel are referred to as end-
members of that pixel. The selection of appropriate end-
members to input into a linear model is important. It can
be achieved in two ways'’: (i) From a spectral (field or
laboratory) library; and (ii) From the purest pixels in the
image.

Endmembers obtained through the first option are gen-
erally referred as ‘known’, while those from the second
option are called as *derived’. Derived endmembers have
preference over the ’known’ because they are collected
under the same atmospheric conditions. It saves from the
necessity to atmospherically correct the image. Also, it
sets aside the possibility of ignoring a pure endmember in the
scene''. The homogeneous field of having at least 3 x 3
pixel area centre point coordinate was registered with the
help of GPS (GS5+ Leica system). The same was co-registe-
red in the satellite imagery and endmember pixel DN
value was extracted.

DN values were converted to satellite radiance values
by utilizing the information provided in the ancillary data
of the scene (Table 1) as described below'*:

Li=DNiXGi+Bi,

where the subscript denotes band, L; at satellite radiance
(mW cm* sr'), DN the eight-bit Landsat-7 ETM* image
data, and G; and B; are band-specific gains and bias, both
of which were obtained from the image metadata (Table 1).

SMA was done for DN and radiance values. The algo-
rithm was implemented in Microsoft Visual C**. Since
the SMA program was implemented as an unconstrained
version, with no constraints on the values of the fraction
images, not all fractional values were between 0 and 100,
but some values were below 0 or above 100. In the next

Table 1. Landsat-7 ETM" sensor details showing wavelength range,
gain and bias

Landsat-7 Wavelength Gain Bias
ETM*band range ([Lm) (MW em™ st um™)  (mW em ™ sr')
Band-1 0.45-0.52 0.06024 -0.152
Band-2 0.52-0.60 0.11751 -0.284
Band-3 0.63-0.69 0.08057 -0.117
Band—4 0.76-0.90 0.08145 -0.151
Band-5 1.55-1.75 0.01211 -0.370
Band-7 2.08-2.35 0.00569 -0.015
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step the fractional values of below 0 endmembers were
eliminated and the SMA program was again imple-
mented. The values above 100 were considered outside
the range of the endmembers and were stretched to 100.
Ideally, the algorithms that generate mixture maps con-
strain the individual material fractions to the range of 0.0
to 1.0 and the sum of the fractions for a single pixel totals
to 1.0. The output fraction images were reclassified in
IDRISI with five classes, i.e. <20, 40, 40-60, 60-80%
and above 80%. This scaling was chosen for three main
reasons. First, it increased the interpretability of each
fractional image, as used by the original SMA implemen-
tation from the University of Washington'’. Secondly, frac-
tions outside the above range are usually meaningless.
Finally, for the economy of output data disk-storage space.

To assess the accuracy of final fraction maps and to
evaluate the robustness of the method, the spatial clusters
of delineated pixels corresponding to coconut signatures
were selected from the population of a random subset of
test sites and identified on the field by GPS (GS5+ Leica
system). These test site proportion of coconut was then
calculated in the polygon representing the field. For each
test site, accumulation of the corresponding endmember
fractions was calculated to indicate the area of the polygon
as estimated by sub-pixel classification method. The accuracy
of endmember fraction was estimated as the mean of the
percentage absolute difference between actual and modelled
estimates as described below.

5:[1—2'7“"/n]100,

14

where & is the per cent correctness of sub pixel classifica-
tion, 7is the actual area of a test site for the endmember,
o is the SMA modelled area of the test site for the end-
member and 7 is the number of test sites.

Spectra for five different land-cover types existing in
the study area were plotted for the image. These are the
spectra obtained from the imagery (Figures 1 and 2). The
endmember spectra for almost all the land-cover types
showed similar pattern to each other. It indicates that are-
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Figure 1. Endmember DN values of different LANDSAT-7 bands.
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canut had a low DN and radiance in visible and near in-
frared band 4. In the middle infrared band 5 and far infrared
band 7, coconut had the lowest value. Better separability
of different land-cover types was more pronounced at sat-
ellite radiance than DN value, particularly in the visible
region of the spectrum.

In the image, water bodies were masked and the frac-
tion image was developed using SMA based on DN and
radiance values. Figure 3 is a fraction set for coconut
LANDSAT-7 ETM" data. It indicates that 69% of the
pixels had coconut in the instantaneous field of view
(IFOV). The median of fraction of coconut in the study
area was 0.42. Only two per cent of the pixels having co-
conut had land-cover fraction of more than 0.75 for coco-
nut (Figure 4).

Accuracy assessment for each classified image was
conducted based on the test data from GPS registered
ground-truth points and fractional image. The error matrix
was created for coconut cover type. The subpixel accuracy
achieved for the coconut land-cover was 87% by using
SMA of DN values, while it was 93% for SMA of radiance
values.

The selection of endmembers is a critical component to
successful application of mixture modelling. The first
uses reflectance spectra measured in the field or laboratory.
This method allows great control over the selection of
endmember spectra, but requires that raw image data be
correctly converted to reflectance, an often difficult task
in remote sensing. It is also often difficult to obtain refer-
ence endmember spectra for all cover types. The second ap-
proach derives endmember spectra directly from the
image by extracting reflectance from relatively ‘pure’ pixels
from the field survey. Using image endmembers bypasses
the need for ground measurements of cover-type reflectance,
as well as the need for accurate, atmospherically correct
images. In our study we used endmembers selected from
the image.

Land-cover reflectance varies widely with changes in
canopy structure and leaf chemistry'* and variability for
land area changes in mineralogy, organic matter content,
and moisture'®. In the study area almost similar pattern of
spectral response for all the endmembers was observed
with separability in the visible region of the spectrum.

- Coconut

o Road
Laterite

—=— Construction

—e— Arecanut

4

Cloud

Radiance (mW cm® sr'')

Band Band Band Band Band Band
1 2 3 1 5 7

Figure 2. Endmember at satellite radiance of different LANDSAT-7
bands.
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Figure 3. Fraction image of land-cover maps of coconut for toposheet part of Kasaragod district, Kerala.

Linear spectral unmixing was applied on the endmembers
to complete the dataset of Landsat-7 ETM* image. To develop
high-quality fraction images, relatively unimportant land-
cover types like water (or shade) should be masked be-
fore the SMA procedure'®. Masking of water bodies be-
fore SMA procedure was adopted in this study also.
Unconstrained unmixing is chosen. It is preferred over
constrained unmixing, as there is no use of artificially
constraining the mixing for non negativity. It will just
apply a linear correction after having unmixed the data.
The advantage of unconstrained unmixing is that we can
assess the results. If there are negative abundances for
any of the endmembers then the unmixing does not make
any physical sense. One reason for this may be the incor-
rect selection of endmembers. Hence, it is better to run
unmixing iteratively to examine the abundance image and
RMS error image. Ideally, the RMS image should not

CURRENT SCIENCE, VOL. 91, NO. 12, 25 DECEMBER 2006

have high errors, and all of the abundance images are non-
negative and sum to less than one. This iterative method
is much more accurate than trying to artificially constrain the
mixing, as in this way it is possible to detect the errors of
the model'".

Fraction image of endmember has been found valuable
for identifying coconut land-cover type. A study'’ investi-
gated selective logging with soil fraction images, which
highlighted cleared landings where logs are stored before
being transported to mills. An automated Monte Carlo
spectral mixture was used in the model with Landsat-7
ETM imagery to detect landings, roads, skid trails and
tree-fall gaps associated with selective logging in the
eastern Amazon'®,

The cumulative frequency distribution for coconut
land-cover fraction of 0.50 is 68%. Coconut is mostly
cultivated as a small holder crop, the average size of a
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Figure 4. Frequency of coconut fractions in the pixel based on entire study area (¢ and b) and presence of

coconut in the pixel (¢ and 4).

holding being 0.22 ha. These small holders cultivate large
number of crops to meet their diverse needs, such as
food, fuel, timber, fodder and cash'®, The canopy cover of
coconut is about 75% in ideally spaced coconut gardens.
In the study area the pure endmember for coconut land-
cover is in low frequency. Light transmittance study at
CPCRI, Kasaragod showed that 26.7% of the incident
light is available for the under storey intercrop in the 40-
year-old coconut garden®’.

Thus the SMA can be extrapolated to different dates of
LANDSAT-7 images for change detection or for classifi-
cation of land-cover types in a large area. Earlier studies
have shown that the SMA is a promising approach for
land-cover classification and change detection in the
moist tropical regions’'>’. Caution must be taken when
the multitemporal LANDSAT data have different sun-
elevation angles, especially in a rugged region like the
present study area. In this case, accurate topographic cor-
rection using digital elevation model (DEM) data may be
necessary.

Soil fertility, topography and land-use history influence
the vegetation®*”’. Vegetation stand structures, vegetation
vigour and soil conditions affect the reflectance values
captured by remote sensing sensors. Due to the complexity
of biophysical environments on coconut, remote sensing
signatures cannot effectively reflect the very small fraction
of coconut in IFOV. This makes abundance estimation of
coconut difficult in very small fractions, which could be
the reason for not attaining 100% subpixel classification
accuracy.

Earlier studies had demonstrated that spectral, spatial-
based classifications were confirmed to provide better re-
sults than other per pixel classifiers’®**, However, due to
the limitation of radiometric and spectral resolution, it is
difficult to greatly improve the SMA classification accu-
racy for coconut land-cover. In terms of the availability
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of new sensors and data, optical and microwave data pro-
vide complementary information about land-cover and
vegetation fragmentation. Besides overcoming the problem
of cloud cover, use of radar data or integration of radar
data with multispectral data is a promising way for future
land-cover mapping™® "

In our study, SMA performed on radiance values gave
better subpixel classification accuracy than SMA on DN
values. Calibration of image data to radiance is not neces-
sary for image classification with maximum likelihood or
other per pixel classifiers using a single-data image. As
long as the training data and image to be classified are on
the same relative scale, calibration of image had little ef-
fect on classification accuracy32. However, the numerical
seperability measure as a fraction of range and maximum
value in the band among different endmembers is nume-
rically high in radiance values (51.58% for DN value and
76.02% for radiance value in band 5).

An alternative to improve the extraction of earth sur-
face feature information for vegetation classification in
the study area is to use of state-of-the-art techniques for
image processing and classification. ART-MMAP (Adap-
tive Resonance Theory — Mixture Mixture Analysis Model)
based on neural network approach to subpixel classifica-
tion estimated the fractions of land-cover with higher ac-
curacy”. Independent component analysis aided linear
spectral mixture analysis®* and nonlinear spectral mixture
model by genetic algorithm optimization technique are
among the main trends to improve the subpixel classifica-
tion accuracy.

The advantage of the fraction images extracted by this
technique is that they contain different land-cover com-
ponents within a pixel. This study demonstrates the possi-
bility of using SMA as a subpixel technique to map
coconut land-cover in the study area in Kasaragod dis-
trict, Kerala. The results show considerable capability of
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this technique to classify the main land-cover types. It is
clear that this technique gives more accurate results in
case of homogenous coconut land-cover. SMA could be
used successfully to classify different vegetation covers
in intensive agricultural areas. It is also to be noted that
the method is easy to implement and has low computa-
tional cost.
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