Microbial DNA extraction from samples of varied origin

S. Ray Chaudhuri*, A. K. Pattanayak and A. R. Thakur
West Bengal University of Technology, BF 142, Sector I, Salt Lake, Kolkata 700 064, India

The impact of four different soil DNA extraction methods on the quantity and quality of isolated community DNA was evaluated using agarose gel electrophoresis, DNA spectrum study and PCR-based 16S ribosomal DNA analysis. The modified direct lysis method was optimized for environmental water samples (wastewater fed-fisheries and raw liquid sewage canal) as well as diagnostic samples like urine from humans, thus opening up a new arena for fast culture-independent detection of causative pathogens in pathological manifestations like urinary tract infections. The same method was independently found to be effective for isolation of genomic DNA from both Gram-positive and Gram-negative bacteria. Thus a uniform method of DNA extraction from environmental samples (different types of soil and water), pathological samples as well as varied kinds of bacteria was obtained.

Keywords: Community DNA, DNA extraction, microbial biodiversity, urine microbial analysis.

*For correspondence. (e-mail: shaon_raychaudhuri@yahoo.co.in)
Table 1. Physico-chemical analysis of soil from different sites of East Calcutta Wetlands. Organic carbon below 0.50 is low, 0.50 to 0.75 is medium and above 0.75 is high. Electrical conductivity is normal below 1.0 mmol cm$^{-1}$. Soils from all the sites have neutral pH (6.7 to 7.3). The last column represents the amount of DNA (µg) extracted per gram of soil by direct lysis method.

<table>
<thead>
<tr>
<th>Soil site</th>
<th>Sand</th>
<th>Silt</th>
<th>Clay</th>
<th>Texture</th>
<th>Per cent organic carbon</th>
<th>Per cent moisture content</th>
<th>EC</th>
<th>DNA µg/g soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>67.2</td>
<td>24</td>
<td>8.8</td>
<td>Sandy loam</td>
<td>0.61</td>
<td>22.31</td>
<td>0.5</td>
<td>6–9</td>
</tr>
<tr>
<td>b</td>
<td>71.2</td>
<td>24</td>
<td>4.8</td>
<td>Sandy loam</td>
<td>0.61</td>
<td>22.41</td>
<td>0.5</td>
<td>7–9</td>
</tr>
<tr>
<td>c</td>
<td>93.2</td>
<td>2</td>
<td>4.8</td>
<td>Sand</td>
<td>0.54</td>
<td>23.54</td>
<td>0.3</td>
<td>10–12</td>
</tr>
<tr>
<td>d</td>
<td>81.2</td>
<td>12</td>
<td>6.8</td>
<td>Loamy sand</td>
<td>0.82</td>
<td>18.53</td>
<td>0.6</td>
<td>16–19</td>
</tr>
</tbody>
</table>

The removal of loosely attached materials as well as salts from the sample. During lysis, along with lysis buffer (100 mM Tris-HCl (pH 8.0), 100 mM EDTA (pH-8.0), 1.5 M NaCl), 50 µg/ml proteinase K was added. The direct method of extraction was applied to soils of varied characteristics (Table 1). This method was also applied for extraction of genomic DNA from Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis, uncharacterized novel strains) as well as Gram-negative bacteria (Escherichia coli, uncharacterized novel strains; Figures 1 and 2).

Co-extracted humic acid is the major contaminant when DNA is extracted from the environmental sample. These compounds absorb at 230 nm, whereas DNA absorbs at 260 nm and protein at 280 nm. To evaluate the purity of the extracted DNA, absorbance ratio at 260/230 nm (DNA/humic acid) and 260/280 nm (DNA/protein) was determined (Table 2, Figure 3). The isolated DNA was analysed on 1.5% agarose gel (Figures 1 and 2).

DNA isolated by the direct method (soil, water, urine), sonication and enzymatic lysis was used directly for PCR amplification, but that isolated from indirect method was used in 1:50 and 1:100 dilutions for PCR. The reason for this variation was the presence of higher concentration of co-eluted inhibitors in the later preparation compared to the earlier ones. The concentration of template is adjusted so that the inhibitor concentration is below the critical level and does not inhibit amplification anymore. PCR was performed in a Geneycler (BioRad). Degenerate Universal primers 5'-TGA CTG ACT GAG TGC CAG CMG CCG CGG-3' and 5'-TGA CTG ACT GAG AGC TCT ACC TTG TTA CGM YTT-3', M = A/C, Y = C/T (Isogen Life Science, Holland) were used for amplification of the 16 SrDNA fragment (1050 nt) using touch-up program mentioned elsewhere. Here since the primers are degenerate, during PCR the annealing temperature was increased with increasing number of cycles to ensure a stringent amplification at the beginning to remove specific
Table 2. Comparative data of genomic DNA isolated by modified direct lysis, lysis by sonication, enzymatic lysis and indirect lysis from loamy sand. It represents the total yield. A260/A230, A260/A280 ratio. A260/A230 > 2 indicates pure DNA with low organic contamination, 1.7 < A260/A280 ≤ 2 indicates pure DNA.

<table>
<thead>
<tr>
<th>Method</th>
<th>A260/A230</th>
<th>A260/A280</th>
<th>Yield µg/g soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct lysis</td>
<td>2.04</td>
<td>1.895</td>
<td>17</td>
</tr>
<tr>
<td>Lysis by sonication</td>
<td>2.05</td>
<td>1.893</td>
<td>19</td>
</tr>
<tr>
<td>Enzymatic lysis</td>
<td>2.01</td>
<td>1.88</td>
<td>16.7</td>
</tr>
<tr>
<td>Indirect lysis</td>
<td>1.05</td>
<td>2.117</td>
<td>199</td>
</tr>
</tbody>
</table>

products as well as to allow most of the primer pairs to amplify at their respective annealing temperatures subsequently. The reaction mixture (50 µl) consisted of 1–6 µl template (up to 500 ng depending upon the concentration of co-eluted inhibitor), 5 µl of 10 × PCR Buffer (10 mM Tris-HCl (pH 9.0), 1.5 mM MgCl2, 50 mM KCl, 0.01% Gelatin) (Bangalore Genei, India), 250 µM deoxyribonucleotide triphosphate (Sigma), 3U Taq polymerase (Bangalore Genei) 0.7 µM of each primer (Isogen Life Science, Holland). The PCR products were analysed on a 1.5% agarose gel (Bangalore Genei) (Figures 2 and 4).

The PCR products were subsequently cloned (where required) and sequenced using the DBT sponsored DNA sequencing facility at Delhi University South Campus (ABI). The GenBank accession numbers of sequences amplified from environmental samples are DQ256262-DQ256264, DQ270005-DQ270006, AY897549-AY897554.

Community DNA was isolated by four different methods. DNA was analysed by agarose gel electrophoresis.
(Figures 1 and 2) and UV spectrum analysis (Table 2, Figure 3). The experiments were repeated five times. The results mentioned above show that except from indirect lysis, all other DNA isolates, viz. by direct lysis, lysis by sonication as well as enzymatic lysis were pure and in good quantity. DNA by direct lysis was accepted as the method of choice for further studies (Figure 1) as it gave maximum amount of pure intact DNA (no DNA smear of lower molecular weight). DNA isolation was carried out from soils of different mechanical properties (Table 1) by the direct lysis method (Figure 3b). Pure DNA was obtained in sufficient quantity (Table 1). The same method when applied to urine; enriched as well as pure cultures of both Gram-positive and Gram-negative bacteria (Figure 2), gave pure DNA which was subsequently used for PCR amplification of 16 SrDNA gene (Figures 2 and 4), TA-cloning (for community DNA and mixed culture) and sequencing. The novel sequences were submitted to GenBank. The applicability of DNA-based methods in the detection of pathogens would minimize the use of only culture-based detection. This becomes essential, as only 1 to 4% of the microbes can be cultivated under standard laboratory condition. Thus here we report one method of DNA isolation which works for a wide variety of samples ranging from soil of different kinds, water bodies with different organic and metal content (data not shown), and pure bacterial cultures of both Gram natures to pathological specimens.

ACKNOWLEDGEMENTS. We thank the Department of Science and Technology, New Delhi for the financial support; the DBT-sponsored DNA sequencing facility at South Delhi Campus, Delhi University for the sequencing; Office of Joint Director of Agriculture, Soil Survey and Conservation Division, Kolkata as well as the Soil Conservation Office, Kalyani for soil analysis, and West Bengal University of Technology, Calcutta, for computational facility.

Received 12 January 2006; revised accepted 21 July 2006

Agrobacterium-mediated genetic transformation of Nagpur mandarin (Citrus reticulata Blanco)

R. N. Khamale1, S. K. Singh1,†, G. Garg2, V. K. Baranwal3 and S. Alizadeh Ajirlo4

1Division of Fruits and Horticultural Technology, Indian Agricultural Research Institute, New Delhi 110 012, India
2Department of Botany, Ch. Charan Singh University, Meerut 251 005, India
3Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110 012, India
4Landscape Department, Agriculture Faculty, Tabriz University, Tabriz, Iran

Genetic transformation protocol was developed for Nagpur mandarin (Citrus reticulata Blanco), a choicest citrus variety grown in India and South East Asia. Cotyledon segments from mature seeds were co-cultivated with Agrobacterium tumefaciens for two days and cultured on an adventitious embryo induction

†For correspondence. (e-mail: sanjudydr2@rediffmail.com)