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The present study deals with a major aspect of retrieval
of oceanic and atmospheric parameters from Tropical
Rainfall Measuring Mission-Microwave Imager
(TRMM-TMI) channels following the sensitivity studies
carried out earlier based on radiative transfer model
simulations for rain-free atmospheric conditions over
the global tropical oceans. The potentiality of artificial
neural network (ANN) for retrieval of geophysical
parameters like wind speed, total precipitable water
(TPW) and cloud liquid water (CLW) from TMI has
been investigated. The radiative transfer simulations
of brightness temperatures (TBs) performed for
TRMM-TMI frequencies with the inputs from the
European Centre for Medium Range Weather Fore-
cast (ECMWF) fields of geophysical parameters were
used for the constitution of the database of input and
output field vectors for the ANN applications. The re-
sults show that the neural network algorithm has the
capacity to perform retrieval of ocean—atmospheric
parameters with good accuracy.
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DURING the past several years, the use of satellite-based
microwave radiometers for continuous observations of
ocean and atmosphere has become common practice. The
use of well-calibrated satellite-based microwave radiometers
makes it possible to obtain long time series of geophysi-
cal parameters. Over the oceans, these parameters include
three phases of water: total precipitable water (TPW),
cloud liquid water (CLW) and rainfall as well as surface
parameters like the sea surface wind speed (WS) and sea
surface temperature (SST). The parameters are highly
useful in a wide variety of studies of hydrological processes'
and can improve weather prediction via data assimilation
into operational models™. In order for the satellites to
provide the best possible performance in providing most
accurate geophysical parameters, it is pertinent to explore
the newly emerging techniques in the field of retrievals.
The major objective of this paper was to develop a re-
trieval algorithm for non-raining oceanic and atmospheric
parameters like the WS, TPW, and CLW for the Tropical
Rainfall Measuring Mission-Microwave Imager (TRMM-
TMI) radiometric channels to a desired accuracy based on
artificial neural network (ANN) approach as a prelude to
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the MADRAS (Microwave Analysis and Detection of Rain
and Atmospheric Systems) sensor of Megha-Tropiques
mission under Indo-French joint programme which will
have almost similar frequencies as those of TRMM-TMI.

Recently ANN has been recognized as being useful for
retrieval operations in remote sensing of the ocean and
atmosphere. The use of ANN in statistical estimation is
often effective because it can simultaneously address
nonlinear dependencies and complex statistical behaviour.
It has been shown that a multilayer perceptron® with a
single hidden layer and nonlinear activation function is
capable of approximating any real valued continuous
function, provided a sufficient number of units within the
hidden layer exists’. Several studies have been conducted
earlier, for retrieval of sea surface wind6’7, total precipi-
table water® '* and integrated cloud liquid water''™'* para-
meters using mainly Special Sensor Microwave Imager
(SSM/I) data and multiple regression approach. More re-
cently, a methodology for the formulation of multi-
parameter and multi-instrument retrieval from TRMM
was developed by Obligis et al.'”. The performance of
ANN approach compared to the multiple regression ap-
proach has recently been made'®, for retrieval of TPW
and CLW with the SSM/I observations. The present at-
tempt is to evaluate the performance of ANN approach
for retrieval of all the above-mentioned parameters using
simulated database from radiative transfer model for
TRMM-TMI radiometric channels. The ANN approach
used here is based on a multilayer perceptron developed
by Moreau ez al."’.

The main input database for radiative transfer simula-
tions is from a set of ECMWF forecast fields, represent-
ing tropical regions of the globe mainly during monsoon
period over the Indian Ocean and Indian sub-continent.
About 25,368 atmospheric profiles were used for the
simulations through a radiative transfer model from Pri-
gent er al.'® that constitutes the vertical profiles of tem-
perature, pressure, specific humidity and CLW defined on
31 vertical levels and the pressure, temperature and specific
humidity at the surface and wind speed at 10 m height.
The horizontal resolution of these data are 1.125°Xx
1.125° in latitude and longitude, which corresponds to a
125 km horizontal mesh at the equator. The model simu-
lated brightness temperatures (TBs) and the correspond-
ing ECMWF forecast fields of the main geophysical
parameters of interest are used here as the input and output
field vectors for designing the ANN architecture both for
training and testing purposes.

Given accurate and reliable input and output field vectors,
geophysical retrieval algorithms can be developed using
various approaches. As stated earlier, we have used the
ANN approach, on the database using the radiative transfer
simulations for TMI channels (10, 18.7, 21, 37 and
85 GHz) for both horizontal (H) and vertical (V) polari-
zation except for a single-V polarization at 21 GHz, with
the ECMWEF fields of oceanic and atmospheric variables.
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A brief description of ANN, relevant for this paper is given
below.

An ANN may be viewed as a mathematical model com-
posed of many nonlinear computational elements, named
neurons, operating in parallel and massively connected by
links characterized by different weights. A single neuron
computes the sum of its inputs, adds a bias term, and
drives the result through a generally nonlinear activation
function to produce a single output termed ‘the activation
level of the neuron’. ANN models are mainly specified by
the network topology, neuron characteristics, and training
or learning rules'. The term ‘topology’ refers to the archi-
tecture of the network as a whole: the number of its input,
output and hidden units and their interconnection. For
this study, a three layer feed-forward neural network is
used. It consists mainly of three layers of fully connected
nodes. As stated earlier, each hidden or output node in the
network receives a ‘signal’ from each node in a previous
layer; these signals are summed and are fed in an activation
function to produce a single output signal for that node
(Figure 1). The sigmoid function was chosen as the activa-
tion function for all the nodes in the hidden layer, given by

S =1/(1+e™).

The sigmoid activation function squashes the input which
may have values between plus and minus infinity, to
yield these values in the range [0, 1]. The multilayer per-
ceptron is designed to approximate an unknown input—
output relation by determining the weight and strength of
each connection via learning rules. These rules indicate
how to pursue minimization of the error function measuring
the quality of the network’s approximation on the restric-
ted domain covered by a training set. In the present case
the error minimization is done using the back propagation

Geophysical Parameters
(TPW, CLW,SSW)

Output Layer

Brightness Temperatures

Figure 1. A neural network architecture connecting inputs (brightness
temperatures) and output (TPW, CLW, SSW).
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algorithm®®. Output for the first hidden node, say y, is
given by

I
nw=r Zwlixi +0
i=l

and similarly for y, and output nodes and so on. Here fis
the activation function given above, w); is the weight con-
necting y; to ith input and ¢ is bias. Here we have used
batch version of gradient descent or steepest descent al-
gorithm, in which we first start with some initial guess
for the weight vector (which is often chosen at random)
and then iteratively update the weight vector to minimize
an error function equal to mean square difference bet-
ween the desired and the actual output such that at step n

A" = qVE| , +uAn",

where 1 is learning parameter and |l is momentum para-
meter. The ANN architecture used in this study consists
of one input layer (with four to nine neurons or nodes),
one hidden layer (with 16 neurons or nodes) and one out-
put layer (with one neuron or nodes).

From the database composed of the simulated TBs for
the TMI configuration and corresponding atmospheric
profiles of the parameters of interest, ANN algorithm is
used to derive the weights and the residual error of the al-
gorithm. The ANN architecture used in this study consists
of an input layer, a hidden layer, and an output layer. The
nine inputs used in the ANN are radiative transfer simulated
TBs corresponding to 10.7 GHz (V, H), 18.7 GHz (V, H),
21 GHz (V), 37 GHz (V, H) and 85 GHz (V, H) of TMI
instrument onboard TRMM. The outputs are the ECMWF
fields of TPW, CLW and SSW which were also used as
inputs for the simulations. The training cycle involved
forward feeding TB values in the training set from the in-
put layer to the output layer to calculate the three map-
ping errors associated with TPW, CLW and WS
separately and then backward propagating the mapping
errors from the output layer to the input layer by adjusting
the weights in the ANN. The root mean square error is
calculated after all the input and output pairs in the training
set are processed. The training is stopped in all the three
cases when the rms error converged to a specified rms
tolerance. The tolerance limit used for training is 0.0 and
that is the tolerance limit for the simple error (desired-
obtained) not for the RMSE. A total of 25,368 simulated
TBs input profile database for the above-mentioned 9
channels of TMI with output data of TPW, CLW and WS
were used separately. Out of this total database, 20,000
were used in training and the rest 5368 for testing the al-
gorithm in all the three cases. All the three parameters
achieved best performance of the ANN with different archi-
tectures respectively with variation in number of nodes in
input and hidden layers (e.g. 4 to 9 nodes in the input
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Figure 2.

d, Training data set; e, Testing data set.

layer and similarly different no. of nodes in the hidden
layer) and number of iterations for the respective parame-
ters. The inputs (TBs corresponding to the 10, 19, 21, 37
and 85 GHz channels) are processed with the number of
nodes of hidden layer and then hidden layer nodes are
processed with output node. The values of the learning
rate parameter used for the ANN training were taken as
0.001 to 0.05 and the momentum parameter as 0.01 to
0.03 in the three cases. The analysis of the results is pre-
sented below for each parameter separately and briefly.
Figure 2 a shows the distribution of error with number
of iterations during learning (continuous line) and testing
phase (dashed line). It is evident that in case of water va-
pour the error drops very sharply within a few hundred
iterations and later becomes almost constant, till more it-
erations are allowed to ensure that the ANN had learned
the large values equally well as the small values. At this
point the ANN is considered to be trained. The merger of
continuous and dotted lines clearly shows that the data
has been squashed well before separating into the training
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Binned TPW (gm/cmz)

a, Distribution of global error. Desired vs ANN retrieved TPW for b, Training data set; ¢, Testing data set. Binned TPW (g/cmz)

and testing sets and thus covering similar dynamic ranges
in both sets and coincidentally the final ANN architecture
leads to similar curves almost overlapping each other.
The continuous black line has been marked as App to
represent an application of ANN to the training data and
blue line to represent the validation as Val for the testing
data set. Figure 2b,c shows the corresponding distribu-
tions of the desired and the ANN retrieved TPW for
learning (20,000) and testing (5368) data sets respecti-
vely. The error statistics of these data distribution is
shown in Table 1 for the training and testing data sets re-
spectively.

There are significant correlations of 0.99 achieved in
both cases of training and testing data sets. The average
rms error and bias of 0.03321 and 0.0325 respectively are
also very statistically significant. These are encouraging
results and thus we also critically examine the running error
estimates (i.e. the bias, standard deviation and rms error
respectively) for each bin of TPW for both training and
testing sets of data in Figure 2 d, e. In both cases, the rms
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Table 1. Statistics of the input database

Training phase Testing phase

No. of data points 20000 5368
Correlation coefficient 0.990 0.990
Bias 0.0054 -0.0056
Standard deviation 0.0322 0.0319
RMS error 0.0332 0.0325

error, standard deviation and bias are highest after
5.0 g/em® of TPW. However these values of error esti-
mates are very marginal and the average error estimates
shown in Figure 2b,c could be considered statistically
representative for both training and testing cases.

A similar experiment has been performed for the CLW
to evaluate the performance of ANN. The dynamic range
of liquid water in ECMWF fields was found from 0 to
248.03 mg/cm’. However, above 80 mg/cm’®, CLW is
considered raining to heavy raining situations. Thus the
results of radiative transfer simulations for the ECMWF
profiles with CLW only up to 80 g/cm® are taken for con-
sideration in ANN learning and testing procedures. This
reduced the total number of data points by less than 10%
only, as such cases that have been encountered during the
simulations are very limited. However the data of input
and output field vectors are partitioned in similar propor-
tion as for TPW in order to retain the dynamic interde-
pendency of the ocean and atmospheric variables
represented in the database.

Similarly, the time evolution of error during the training
and testing phases was of similar nature (not shown for
brevity). A high correlation coefficient of 0.99 and rms
error less than 0.9 mg/cm® in both cases was found en-
couraging for CLW which has nonlinear response with
brightness temperatures due to the high degree of emis-
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Binned CLW. @, Training data set; b, Training data set.

sion and Rayleigh scattering from the cloud drops. Due to
this inherent nonlinearity of TBs and CLW relationship,
we have experimented here with more number of hidden
neurons keeping the other criteria of input and output
channels common. The number of hidden neurons is pro-
portional to the flexibility of ANN; the more the number of
neurons used, the better is reproduction of the training
data. Nevertheless too many neurons may result in larger
errors for independent test set. Figure 3 a,b shows the
root mean square error (rmse), standard deviation (sd)
and bias with the binned CLW in both training and testing
data cases respectively which are all mutually consistent
and show that the bias and rms errors are higher with sd
after 60 mg/cm” of CLW in both the cases. Still the per-
centage of this rms error is quite less and thus it indicates
that better performance of ANN architecture is finally
achieved.

The scanning radiometer TMI aboard TRMM, has made
it possible to examine the benefits of 10 GHz channel to
radiometric wind estimates. This channel provides a more
transparent window to the ocean surface, and shows good
sensitivity to the wind modulated ocean surface roughness.
In addition, among all the TMI channels, it is this channel
which has the maximum cloud penetration capability and
thus provides ample opportunity for the retrieval of ocean
surface parameters during the significant cloud cover
conditions®. These advantages of the 10 GHz channels
thus can also be used for the optimization and selection
of suitable combination of other frequency channels in
forthcoming satellite missions. Here we have attempted
to explore the capability of ANN for the wind retrievals
with the same database through radiative transfer simula-
tions. The application of ANN to this database shows a
correlation coefficient of 0.998 and 0.970 that is achieved
in both training and testing cases with the learning rate
and momentum parameter chosen within the range men-
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Figure 4. Binned wind speed (m/s). @, Training data set; b, Testing data set.

tioned above. For brevity only the figures for the error
statistics and their running distributions with binned wind
speed are shown in Figure 4 a, b respectively for training
and testing cases.

The bias and root mean square error (rmse) are minimum
below 0.25 m/s up to 20 m/s wind conditions which goes
up by 0.5 m/s for winds at 20 to 25 m/s. This is because
above 20 m/s, the weather conditions are not only rough
over the oceans but also the associated surface conver-
gence is associated with the atmospheric loading of CLW
and rain and thus the error sources are increased. Here the
TBs from the channel combinations of 37 GHz and below
are opted as the input vectors (7 inputs of TBs) for the
ANN training and testing along with the ECMWF surface
winds (as output). It is evident from Figure 4 a, b that the
performance of ANN is highly desirable for the retrieval of
wind speed. Though the optimization of channel combi-
nation is further being performed with more sensitivity
experiments, the results in all the three cases above are
highly encouraging to look forward for the ANN ap-
proach to be adopted for the retrieval from forthcoming
spaceborne microwave observations.

The potential of ANN for the development of retrieval
algorithms for TPW, CLW and ocean surface winds from
TRMM-TMI are studied. The present study has demon-
strated the major aspects of retrieval of oceanic and atmos-
pheric parameters followed from the sensitivity studies
carried out through radiative transfer model simulations
for rain-free atmospheric conditions over the oceans.
Various architectures of the ANN have been experimented
and the results are quite satisfactory in demonstrating the
performance of ANN for the possible retrievals of all the
three geophysical parameters from microwave radiometry
with TRMM-TMI type of sensor. The study is aimed to
ascertain the accurate retrievals of the geophysical parame-
ters to be obtained from the MADRAS sensor of the Indo-
French joint mission, MEGHA-TROPIQUES over the
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tropical regions which will be launched sometime in this
decade. Timely, the recent Bay of Bengal Monsoon Ex-
periment (BOBMEX)* during July-August 1999 and
Arabian Sea Monsoon Experiment (ARMEX) during
July—August 2002 and 2003, have made it possible to up-
grade several instruments in ships (e.g. Sagar Kanya of
Department of Ocean Development) for the availability
of basic surface meteorological and oceanographic data
under the Indian Climate Research Programme (ICRP).
Ground-based upward looking radars are also being studied
for the observation of the CLW and TPW measurements.
Thus the validation of these retrievals could be planned
for acquisition of ample database for the fine tuning of
the algorithms well before the launch of the satellite.

1. Chou, S.-H., Shie, C.-L., Atlas, R. M. and Ardizzone, J., Air-sea
fluxes retrieved from special sensor microwave imager data. J.
Geophys. Res., 1997, 102, 12,705-12,726.

2. Ardizzone, J., Atlas, R., Jusem, J. C. and Hoffman, R. N., Applica-
tion of SSM/I wind speed data to weather analysis and forecasting.
15th Conference on Weather Analysis and Forecasting, Am. Me-
teorol. Soc, Norfolk, 1996.

3. Deblonde, G. and Wagneur, N., Evaluation of global numerical
weather prediction analyses and forecasts using DMSP special
sensor microwave imager. J. Geophys. Res., 1997, 102, 1833-1850.

4. Beale, R. and Jackosn, T., Neural Computing: An Introduction,
Adam Hilger, Bristol, 1990.

5. Hornik, K., Stinchombe, M. and White, H., Multilayer feedforward
networks are universal approximators. Neural Networks, 1989, 2,
359-366.

6. Goodberlet, M. A., Swift, C. T. and Wilkerson, J. C., Remote
sensing of ocean surface winds with the special sensor microwave
imager. J. Geophys. Res., 1989. 94, 14,547-14,555.

7. Gairola, R. M. and Pandey, P. C., Proc. Indian Acad. Sci. (Earth
Planet. Sci.), 1986, 95, 265-273.

8. Alishouse, J. C., Snyder, S. A., Vongsathorn, J. and Ferraro, R. R.,
Determination of oceanic total precipitable water from the SSM/I.
IEEE Trans. Geosci. Remote Sens., 1990, 28, 811-816.

9. Gairola, R. M., Gohil, B. S. and Pandey, P. C., Remote Sens. Envi-
ron., 1985, 18, 125-135.

CURRENT SCIENCE, VOL. 91, NO. 10, 25 NOVEMBER 2006



RESEARCH COMMUNICATIONS

10. Pandey, P. C., Gohil, B. S. and Hariharan, T. A., I[EEE Trans.
Geosci. Remote Sens., 1984, 18, 125-131.

11. Alishouse, J. C. ef al., Determination of cloud liquid water content
using the SSM/I data. I[EEE Trans. Geosci. Remote Sens., 1990,
28, 817-822.

12. Karstens, U., Simmer, C. and Ruprecht, E., Remote sensing of
cloud liquid water. Meteorol. Atmos. Phys., 1994, 54, 157-171.

13. Gérard, E. and Eymard, L., Remote Sensing of integrated cloud
liquid water: development of algorithms and quality control.
Radio Sci., 1998, 33, 433-447.

14. Varma, A. K., Pokhrel, S., Gairola, R. M. and Agarwal, V. K.,
IEEE Trans. Geosci. Remote Sens., 2003, 41, 1-8.

15. Obligis, E., Eymard, L. and Gairola, R. M., 2nd ISRO-CNES Sci-
ence Workshop on MEGHA-TROPIQUES, Paris, 2001.

16. Jung, T., Ruprecht, E. and Wagner, F., Determination of cloud
liquid water path over the oceans from SSM/I data using neural
networks. J. Appl. Meteorol., 1998, 37, 832—-844.

17. Moreau, E., Mallet, C., Thiura, S., Mabboux, B. and Clapisz, C.,
Atmospheric liquid water retrieval using a gated expert neural
network. J. Atmos. Ocean. Technol., 2002, 19, 457-467.

18. Prigent, C. and Abba, P., Sea surface equivalent brightness tempera-
ture at millimeter wavelength. Ann. Geophys., 1990, 8, 627-634.

19. Lippmann, R. P., An introduction to computing with neural nets.
IEEE ASSP Mag., 1987, 4, 4-22.

20. Rumelhart, D. E., Hinton, G. E. and Williams, R. J., Learning
Representations by Back-propagating Errors, MIT Press, Cam-
bridge, Mass, 1986, pp. 318-362.

21. Wentz, F. J., A well-calibrated ocean algorithm for. SSM/IL. J.
Geophys. Res., 1997, 102, 8703-8718.

22. Bhat, G. S. ef al., BOBMEX - the Bay of Bengal monsoon ex-
periment. Bull. Am. Meteorol. Soc., 2001, 82, 2217-2243.

ACKNOWLEDGEMENTS. We thank Director, Space Applications
Centre for his interest and encouragement. Help from Dr E. Moreou, Dr
Catherine Prigent and Dr Laurence Eymard of CNRS, France is ac-
knowledged for providing the details of neural networks and the radiative
transfer models respectively. We thank the referees for critically exam-
ining and making valuable suggestions to enhance the quality of the

paper.

Received 17 September 2004; revised accepted 26 July 2006

Natural radioactivity of ash and coal in
major thermal power plants of West
Bengal, India

T. Mondal, D. Sengupta® and A. Mandal

Department of Geology and Geophysics, Indian Institute of Technology,
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Natural radioactivity due to the presence of 2**U, **Th
and “’K in ash and coal in major thermal power plants
of West Bengal, namely Kolaghat, Durgapur and
Bandel, has been measured by a Nal (TI)-based gamma
ray spectrometer. The average activity concentrations
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of the radioelements 2**U, ***Th and *’K in the ashes of
Kolaghat were found to be 111, 140 and 351 Bg/kg res-
pectively, at Durgapur 97, 107 and 315 Bg/kg respectively,
and at Bandel 106, 126 and 321 Bq/kg respectively.
The absorbed gamma doses in air due to naturally oc-
curring radionuclides in the ash from the power plants
varied from 123 to 150 nGy h™, which are higher than
three times the world average of about 43 nGyh™.
The ash from power plants contains 2 to 3 times more
natural radionuclides than that in feed coal. Ash sam-
ples have radium equivalent activity (Ra.,) and external
hazards index (H.) values closest to 370 Bg/kg and
unity respectively, which have implications in terms of
radiation hazard arising due to the use of these ash
samples in building and construction.

Ash,

Keywords: coal,

plants.

radioactivity, thermal power

COAL is an important source of power generation in India.
The country has at present 90,000 MW of electricity gen-
eration, of which coal combustion contributes to more
than 70% of the power generation. Hydroelectricity con-
tributes to about 25% and the remaining is from nuclear
power plants'. Combustion of coal results in generation
of huge amounts of ash, which is a major environmental
problem. This problem is particularly important for Indian
power stations because most of them use poor quality coal
with 55-60% ash content. This results in an average pro-
duction of 100 million tons of ash per annum’. In the
combustion process, most of the mineral matter in coal is
converted into ash. Solid wastes produced from the coal-
fired thermal power plants are mainly of two types, i.e.
fly ash and bottom ash. Bottom ash is the coarse-grained
fraction that is collected from the bottom of the boiler
and is disposed by the wet disposal method in a slurry
form to nearby waste-disposal sites (ash ponds). Owing
to its relatively small size and hence large surface area,
ash has a greater tendency to absorb trace elements that
are transferred from coal to waste products during com-
bustion®, Most of the toxic elements (As, Cd, Cr, Ni, Co,
Cu and Sb) become enriched in the soil and groundwater
through leaching form the bottom ash, causing soil and
water pollution.

Coal, like most materials found in nature, contains
trace quantities of naturally occurring radionuclides, ***U,
*2Th and “K. Combustion of coal thus enhances natural
radiation in the vicinity of the thermal power plants by
release of these radionuclides and their daughters into the
surrounding ecosystem. Unlike most of the nuclear and
hydroelectric power stations, coal-fired power stations in
India are generally located in areas which are thickly
populated and, hence, the environmental impact experien-
ced by the neighbouring population is significant. Apart
from inhalation, an additional radiation hazard can be
solid fallout resulting in elevated concentrations of natural
radionuclides in the surface soils around the power
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