Studies on mutations in embB locus in Indian clinical isolates of Mycobacterium tuberculosis having high degree of ethambutol resistance

R. Das¹, K. Katoch¹, G. P. S. Jadauan¹, P. Gupta¹, V. D. Sharma¹, B. Malhotra³, A. Garg³, A. Ayyagari¹, D. S. Chauhan¹, H. B. Singh¹, P. Yadav³ and V. M. Katoch¹*²

¹National JALMA Institute for Leprosy and other Mycobacterial Diseases (Indian Council of Medical Research), Taj Ganj, Agra 282 001, India
²Sawai Man Singh Medical College, Jaipur 302 004, India
³Sanjay Gandhi Post-Graduate Institute, Lucknow 226 014, India

Ethambutol [EMB: dextro-2,2′-(ethylenedimino)-di-l-butanol], a frontline antituberculosis drug, targets the mycobacterial cell wall. Genetic events resulting in structural mutations at the embB locus have been proposed as a major mechanism for EMB resistance in Mycobacterium tuberculosis. In this study, mutations in the embB locus of Indian isolates and their correlation with the MIC levels in M. tuberculosis have been investigated. We have sequenced and analysed 260 bp of the embB gene region containing the hotspot association of EMB-resistance isolates of M. tuberculosis in 39 EMB-resistant and 13 susceptible clinical isolates. Out of 39 resistant isolates, 17 (44%) had mutation in the embB locus at codon 306, whereas the remaining 22 (56%) resistant and 13 sensitive isolates did not have any mutation in this region. Five different substitution mutations of ATG(Met) in the resistant strains were: GTG (Val) 41%, ATA (Ile) 29%, ATC (Ile) 18%, TGT (Leu) 6% and CTC (Leu) 6%. All these mutations at codon 306 were associated with a high degree of ethambutol-resistant phenotype. Results suggest that the embB306 mutations might prove to be one of useful markers for detection of ethambutol resistance in isolates of M. tuberculosis in India. Lack of mutation, however, does not rule out ethambutol resistance.

Keywords: Ethambutol resistance, embB mutation, Indian isolates, Mycobacterium tuberculosis.

ETHAMBUTOL (EMB) is an important first line of anti-tuberculosis drug and is used for treatment of disease caused by Mycobacterium tuberculosis as well as infection caused by M. avium complex.¹² The primary target of EMB on mycobacterial cell wall is an outer layer of mycolic acids covalently bound to peptidoglycan via arabinogalactan.³ EMB inhibits polymerization of cell-wall arabinon, which causes an accumulation of the lipid carrier decaprenol phosphate. It has been suggested that the drug interferes with the transfer of arabinose to the cell-wall acceptor.² The embCAB genetic locus of M. tuberculosis for resistance has been proposed to encode for mycobacterial transferases. Earlier studies have shown that genetic alteration at codon 306 of the embB resulting in amino acid substitution, is associated with ethambutol resistance.⁶⁻⁸ As novel mutations may be responsible for drug resistance in isolates from different countries,⁹ it becomes important to gather such information for EMB resistance from India. In the present study, the sequence polymorphism of the embB region containing codon 306 has been investigated in clinical isolates of M. tuberculosis.

We have randomly selected 52 isolates from previously treated patients of pulmonary tuberculosis, which were deposited in the Mycobacterial Repository Centre at the National JALMA Institute for Leprosy and other Mycobacterial Diseases, from various parts of India (Jaipur 29, Varanasi 6, Agra 6, Hardwar 4, Port Blair 3, Kanpur 2, Delhi 1, Lucknow 1) and identified as M. tuberculosis according to standard criteria.¹⁰ These isolates along with M. tuberculosis H₃₇R₁, were tested for drug sensitivity using Lowenstein–Jensen (LJ) medium containing MIC cut-off levels for resistance–rifampicin 64 µg/ml, isoniazid 1 µg/ml (refs 11–13) and ethambutol 2, 4, 6, 8 µg/ml (ref. 10). The peak plasma concentration achieved¹⁴ with a single adult dose is 3.5–5 µg/ml. Therefore we have selected 8 µg/ml as MIC cut-off level for screening of EMB resistance. All these drugs were obtained from Sigma Chemical Co, USA. A standard bacilli suspension (4 mg/ml) prepared according to the procedure described by Canetti et al.¹¹ was used for inoculation onto LJ medium slants with loop of 3 mm internal diameter. All the inoculated bottles were incubated at 37°C. Growth was observed on the 28th day. MIC was determined using standard criteria of counting the colony-forming units (CFUs) and comparing with culture controls¹²⁻¹⁶.

DNA from the growth of each isolate on LJ slant was extracted using the method of van Embden et al.,¹⁷ using lysozyme, proteinase-K, deproteinization and precipitation with isopropanol. A 260 bp region of embB locus from codon 284 to codon 350 of published sequence (U68480) was amplified using the PCR reaction set up in a 50 µl volume containing 200 ng of genomic DNA, 1X reaction buffer (50 mM KCl, Tris-HCl, pH 9.0), 0.2 mM each of dNTPs, 1 unit of Taq DNA polymerase, 1.5 mM MgCl₂ and 0.1 µM each of the primers: forward, 5′-CGG CAT CCG CCG GCT GAT TC-3′ and reverse 5′-CCA CAG ACT GGC GTC GCTG-3′ (ref. 18). The reaction mixture was then processed in a ‘Gene Amp PCR System 9700’ thermal cycler (Applied Biosystems, USA), using the following parameters: initial denaturation 94°C for 4 min followed by 30 cycles of denaturation at 94°C for 1 min, annealing at 65°C for 1 min and extension step at 72°C for 2 min. Final extension was done at 72°C for 10 min.

*For correspondence. (e-mail: jalma@sancharnet.in)
The amplicon was resolved on 1% agarose gel and 260 bp of the band was excised. DNA was extracted from the gel slices using QIAEX II Gel Extraction kit (QIAGEN, USA). Each sequencing reaction of 20 μl volume consisted of 200 ng template, 3.5 pmol primer, 8 μl sequencing mix (Big Dye Terminator Cycle Sequencing kit V3.1, Applied Biosystems) and adjusted to a final volume of 20 μl by adding distilled water. The cycling parameters were as follows: 30 cycles of 96°C for 10 s and 65°C for 4 min. PCR product was purified to remove unincorporated labelled ddNTPs. This was done by adding 0.1 volume of 3M sodium acetate (pH 4.5) and 2.5 volume of absolute ethanol. Sequencing of the amplicon was carried out using the ABI PRISM 310 Genetic Analyzer. Analysis 3.71 was used for analysing gel information. Sequences generated using the program were compared to their respective wild type (H37Rv) sequences using MegAlign program (DNASTAR, Madison, WI, USA).

Out of 52 isolates studied, 39 EMB-resistant (8 μg/ml) isolates were further evaluated using EMB concentration of 10, 20 and 40 μg/ml. Eight out of 39 (20.5%) isolates exhibited MIC level ≥ 20–40 μg/ml and showed mutation Met306Ile. Nine out of 39 (23%) isolates exhibited MIC levels ≥ 40 μg/ml and showed mutation Met306Leu,Val. Twenty-two out of 39 (56%) resistant (8 μg/ml) isolates were found sensitive at 10, 20 μg/ml and showed no mutation in the embB locus. The mutations identified included ATG → GTG (Met306Val) 7/17(41%), ATG → ATA (Met306Ile) 5/17 (29%), ATG → ATC (Met306Ile) 3/17 (18%), ATG → TTG (Met306Leu) 1/17 (6%) and ATG → CTG (Met306Leu) 1/17 (6%) substitutions. All of these mutations were found only at codon 306 in the embB locus. None of the mutations at codon 306 had any associations with EMB resistance with other drugs like RFM + INH (MDR), EMB and RFM resistance or EMB and INH resistance alone. These results are summarized in Table 1.

Table 1. Results of relationship between drug susceptibility profiles and sequencing results of embB locus in Mycobacterium tuberculosis isolates

<table>
<thead>
<tr>
<th>Isolates investigated</th>
<th>No. of isolates</th>
<th>EMB sensitivity</th>
<th>Codon alteration</th>
<th>Amino acid change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistant to EMB + RFM + INH</td>
<td>6</td>
<td>R</td>
<td>ATG → GTG</td>
<td>Met306Val</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>R</td>
<td>ATG → ATA</td>
<td>Met306Ile</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>R</td>
<td>ATG → ATC</td>
<td>Met306Ile</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>R</td>
<td>ATG → TTG</td>
<td>Met306Leu</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>R</td>
<td>ATG → CTG</td>
<td>Met306Leu</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>R</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Resistant to EMB + RFM</td>
<td>3</td>
<td>R</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Resistant to EMB + INH</td>
<td>3</td>
<td>R</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Resistant to EMB + RFM + INH</td>
<td>6</td>
<td>S</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Resistant to RFM</td>
<td>3</td>
<td>S</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Resistant to INH</td>
<td>3</td>
<td>S</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sensitive to EMB</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMB, Ethambutol; RFM, Rifampicin; INH, Isoniazid; R, Resistant; S, Sensitive.
study no other known/novel mutation was found at the embB locus between codon 284 and 350 in resistant isolates of M. tuberculosis. The presence of embB306 mutation did not correlate with MDR (Table 1) and similar findings have been reported by others as well6,8. Unlike the situation in the case of rifampicin resistance in our preliminary study, no novel mutation was found at the embB locus in Indian strains. Similar mutations in embB306 have also been reported in other studies6,8.

In the isolates studied Met replacement with Val (41% (7/17)) or Ile (47% (8/17)) in the 306th codon was observed in a significant proportion of EMB-resistant isolates. These mutations have been found to be less frequent in other studies. Met306Val substitution has been reported in 9% (ref. 6) and 34% (ref. 19) of EMB-resistant isolates from USA and Russia respectively. Likewise, Met306Ile substitution has been reported in 5% (ref. 6), 14% (ref. 19) and 27% (ref. 21) of isolates from other countries. Frequently observed mutations in EMB-resistant isolates in these studies were Met306Val and Met306Ile. For early detection of EMB resistance the associated embB306 mutations could be of help in developing new techniques/probes for detection of EMB-resistant clinical isolates of M. tuberculosis. Presence of such mutations would be a definitive evidence of ethambutol; lack of such mutations will not be meaningful.

Our results also provide the information that 56% (22/39) of EMB-resistant isolates have no mutation at the embB locus. Thus the possibility of involvement of other mutation(s) in the region of embB loci, like embCA or other mechanisms like permeability and efflux-pumps also associated with EMB resistance cannot be ruled out. In-depth studies will be required to understand other alternate mechanisms of action of EMB responsible for resistance in nearly half of the EMB-resistant isolates of M. tuberculosis in India and other parts of the world.

ACKNOWLEDGEMENTS. We thank various scientific collaborators for providing isolates to the Mycobacterial Repository Centre. We also thank Department of Biotechnology, New Delhi and LEPRAB, UK, for financial support.

Received 7 March 2005; revised accepted 12 May 2006

CURRENT SCIENCE, VOL. 91, NO. 7, 10 OCTOBER 2006