Occurrence of kornerupine-bearing granulite from Karimnagar, Andhra Pradesh

I. N. Sharma and D. Prakash*

Department of Geology, Banaras Hindu University, Varanasi 221 005, India.

Here, we report the occurrence of kornerupine-bearing, quartz-free granulite from the Malial area of Karimnagar district, Andhra Pradesh. It occurs as small enclaves and pods within the granite-gneiss, associated with garnet–orthopyroxene–cordierite–biotite-gneiss. Its mineral assemblage includes kornerupine–cordierite–biotite–spinel, K-feldspar, ilmenite and magnetite. Kornerupine, a hydrated magnesium–aluminium silicate, plots on the 4MgO–3Al₂O₃–4SiO₂ (4:3:4) composition along the solid solution join between 4:3:4 and 1:1:1 (3.5MgO.35Al₂O₃.5SiO₂) compositions. The relative Mg values among various minerals are as follows: cordierite > biotite > kornerupine > spinel. The deduced post-peak metamorphic pressure–temperature conditions of 5–6 kbar and 650–750°C for the kornerupine–spinel–bearing quartz-free granulites are consistent with the experimental work on stability of kornerupine in the MgO–Al₂O₃–SiO₂–H₂O system.

Keywords: Andhra Pradesh, granulite, kornerupine, MASH system, P–T estimate.

KORNERUPINE is a rare mineral in metamorphic terrains and has been reported from a few localities only in India. The first report of kornerupine in India was made by Murthy1 from Rannu, Uttar Pradesh. Later Balasubramanyan2 and Lal et al.3 reported kornerupine in a sapphire-bearing granulite from Kovilpati, Madras and Sonapahar, Assam respectively. Grew4 has described five localities of kornerupine-bearing granulites from the Southern Granulite belt and the Eastern Ghats belt. Recently Sajeev et al.5 reported kornerupine from the Ganguvarpati, South India. In the Karimnagar area, kornerupine occurs as large prograde porphyroblasts in rocks devoid of sapphire, whereas it is associated with sapphire as prismatic aggregates in the above-mentioned areas, except Kondapalle. Kornerupine-bearing granulites have been reported from seventy other Precambrian regional terrains of the world, including Germany6–7, Greenland8, Australia9,10, South Africa11, Sri Lanka12 and East Antarctica13.

Earlier sapphire–spinel-bearing rocks from the Eastern Dharwar Craton (EDC) in the Karimnagar area were reported by Sarvothaman14. Karimnagar and its adjoining areas have attracted attention of petrologists on account of the increasingly useful high-grade rocks that serve as a window for the mid-lower continental crust.

Quartz-free kornerupine-bearing granulite has been found nearly 2 km SE of Malial village in Karimnagar district, Andhra Pradesh (78°58'30"E long. and 18°41'30"N lat. in the Survey of India toposheet 56J/14; Figure 1).

Karimnagar area is predominantly a granite-gneiss terrain along with exposures of charnockite, banded magnetite, quartzite and dolerite dykes. The granite-gneisses and charnockites contain enclaves of high-grade supracrustals, including quartz-free sapphire–spinel granulites, gneisses and basic granulites, which rarely occur in the entire northeastern portion of EDC. Varieties of rocks from the study area reveal a wide range of mineral parageneses and chemical compositions15. The major rock types include charnockites (Opx–Pl–Perth–Qtz ± Bt ± Grt), gneisses (Opx–Crd–Bt–Pl–Qtz–Perth ± Grt ± Sil ± Sp); Bt–Qtz–Pl ± Crd ± Hbl ± Sp), basic granulites (Cpx–Pl–Qtz ± Opx ± Hbl), quartz-free granulites (Spr–Spr–Crd–Bt ± Opx ± Kfs, Bt–Crd–Krn–Splt ± Kfs, And–Bt–Kfs–Chl), granulites (Qtz–Pl–Kfs ± Bt ± Hbl), meta-dolerites (Cpx–

*For correspondence. (e-mail: dprakash_ynu@yahoo.com)

Figure 1. Geological map of the area NW of Karimnagar.
PL ± Bt ± Qtz ± Chl), banded magnetite quartzites and quartzites.

Rajesham et al.16 dated the charnockites and granite-gneisses from the Karimnagar area having Rb–Sr isochron age of ~2500 Ma and interpreted it to represent single major metamorphic event; the high-grade supracrustals that occur as enclaves in these should be obviously older than 2500 Ma.

Kornerupine-bearing rock is dark coloured, massive and coarse-grained. It shows inequigranular granoblastic texture (Figure 2 a). The main assemblage includes kornerupine–cordierite–biotie–spinel ± potash feldspar ± ilmenite, magnetite (minor amount).

Kornerupine is colourless, feebly pleochroic and occurs as coarse prismatic crystals. Spinel and cordierite are isolated to form coarse idioblastic or subidioblastic kornerupine (Figure 2 b) that marks the following reaction:

Spinel + cordierite + vapour = kornerupine ± corundum.

Biotite flakes are present as inclusions and also in direct grain contact with kornerupine. Idioblastic to subidioblastic grains of spinel are also found as inclusions within kornerupine and nowhere in direct contact with cordierite and biotite. Potash feldspar is present in minor amount. Thin sections do not preserve complete reaction textures like coronas and symplectites to infer any other reaction.

Representative electron microprobe data of kornerupine and associated minerals are given in Table 1. Electron microprobe analysis was carried out in the EPMA Laboratory, IIT Roorkee on a JEOL JXA-8600M unit with three fully focused spectrometers. Carbon-coated thin sections of approximately 40 μm thickness were used for analysis. The instrument was operated at a probe current of 2 × 10−8 A with an accelerating voltage of 15 kV and electron beam diameter of 2 μm. ZAF oxide correction was made.

Kornerupine is a hydrated magnesium–aluminium silicate and the analyses plot on the 4MgO.3Al2O3.4SiO2 (4:3:4) composition (Figure 3) along the solid solution join between 4:3:4 and 1:1:1 (3.5MgO.3Al2O3.3.5SiO2) with slight deficiency in Si, Mg and higher Al. Appreciable amount of Fe3+ is present ranging between 0.128 and 0.139 p.f.u. $X_{Mg} = Mg/(Mg + Fe^{3+})$ values show a restricted range between 0.786 and 0.795. Boron was not sought. The name prismatine6,15 has been recently revalidated for kornerupine having boron > 0.5 p.f.u. Cordierite is the most magnesian phase ($X_{Mg} = 0.851$). Biotite has X_{Mg} ranging between 0.814 and 0.849, with low fluorine content. Spinel (harcynite) is relatively iron-rich ($X_{Mg} = 0.382$) in kornerupine-bearing rocks compared to other quartz-free granulites. The relative X_{Mg} variation in the different phases is cordierite > biotite > kornerupine > spinel (I. N. Sharma, unpublished).

Kornerupine and other minerals from the quartz-free granulites have been plotted in the SiO2–(Mg, Fe3+–(Al, Cr)2O3 triangular diagram (Figure 4 a). The important mineral phase, biotite does not plot in this diagram and has to be treated as an excess phase. To resolve this problem, a projection from potash feldspar (Figure 4 b) has been used in the triangular diagram $\{SiO2–6(K2O + Na2O) – (Fe, Mg)O – \{(Al, Cr, Fe3+)2O3 – (K, O + Na2O)\}$.

Kornerupine-bearing quartz-free granulates are found in association of gneisses and two-pyroxene granulites. The gneisses contain garnet, orthopyroxene, cordierite, biotite and feldspar as the main minerals, whereas two-pyroxene granulites consist of orthopyroxene, clinopyroxene, hornblende and plagioclase as the major minerals.

Precise geothermobarometric estimates have not been made for the kornerupine-bearing quartz-free granulites due to lack of well-defined thermodynamic data for kornerupine and absence of relevant phases as P–T sensors. However, a reasonable P–T estimate on the basis of conventional
Table 1. Representative microprobe analyses of the coexisting minerals (sample no. 69XIX)

<table>
<thead>
<tr>
<th>Spot no.</th>
<th>Krn 1R</th>
<th>Crd 3C</th>
<th>Bt 4R</th>
<th>Spl 6C</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>29.73</td>
<td>49.82</td>
<td>37.39</td>
<td>0.00</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.06</td>
<td>0.04</td>
<td>1.07</td>
<td>2.62</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>41.01</td>
<td>32.56</td>
<td>16.49</td>
<td>15.57</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.20</td>
<td>0.13</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>FeO **</td>
<td>8.53</td>
<td>3.58</td>
<td>7.21</td>
<td>8.55</td>
</tr>
<tr>
<td>MnO</td>
<td>0.19</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MgO</td>
<td>15.68</td>
<td>11.54</td>
<td>22.73</td>
<td>21.04</td>
</tr>
<tr>
<td>ZnO</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CaO</td>
<td>0.03</td>
<td>0.02</td>
<td>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.03</td>
<td>0.06</td>
<td>0.18</td>
<td>0.13</td>
</tr>
<tr>
<td>F</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0.07</td>
<td>0.10</td>
</tr>
<tr>
<td>O</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.03</td>
</tr>
<tr>
<td>Total</td>
<td>95.46</td>
<td>97.63</td>
<td>93.93</td>
<td>95.63</td>
</tr>
</tbody>
</table>

Oxygen basis: Si 3.821, Al¹³ 0.179, Al¹⁷ 0.035, Ti 0.006, Cr 0.020, Fe²⁺ 0.128, Fe³⁺ 0.074, Mn 0.021, Mg 3.004, Zn 0.004, Ca 0.004, Na 0.008, K 0.008, X₀ 0.795.

n.d., Not determined; C, Core; R, Rim; *, Total Al in place of Al¹³; **, Total iron as FeO, Fe²⁺ = 42 - [(2R²⁺) + (3R³⁺) + (4R⁴⁺)] for korneupine and Fe³⁺ = 16 - [(2R²⁺) + (3R³⁺) + (4R⁴⁺)] for spinel.

Figure 3. [Fe²⁺, MgO-Al₂O₃-SiO₂] triangular plot showing korneupine composition. Open circle indicates composition of korneupine from the study area. Open triangle (Ellamankovilpatti), square (Gangavarpatti) and solid triangle (Ponnakkadu) are korneupine composition plots from Grew for comparison purpose.

geothermobarometry and convergence method for the retrieval of peak P–T conditions applicable to the associated rocks has been attempted. Basic granulites yield a value of 7–8 kbar and 800–850°C. The average temperature (600–750°C) for the adjoining garnet–orthopyroxene–cordierite–biotite–gneiss is obtained from various Fe²⁺–Mg exchange models of garnet–biotite and garnet–orthopyroxene pairs. Lower values from the garnet–biotite Fe²⁺–Mg exchange geothermometers may be due to re-equilibration during retrogression. Average pressure in the range of 4.5–6 kbar at 700°C is obtained by various geobarometric models of garnet–cordierite–sillimanite–quartz and garnet–orthopyroxene–plagioclase–quartz applied to the garnet–orthopyroxene–cordierite–biotite–gneiss (Table 2).

According to Seifert, boron-free korneupine has been synthesized in the system MgO-Al₂O₃-SiO₂-H₂O (MASH) at water pressure above 4.5 kbar and temperatures in excess of 735°C. Syntheses of boron-free korneupine have also been described by Schreyer and Seifert, and
Table 2. P–T estimate for Grt–Opx–Crd–Bt–gneiss (sample 508a)

<table>
<thead>
<tr>
<th>Sample 508a/spot no.</th>
<th>(X_{Mg})^\text{Opx}</th>
<th>(X_{Mg})^\text{Crd}</th>
<th>(X_{Mg})^\text{Grt}</th>
<th>(X_{Mg})^\text{Bt}</th>
<th>(X_{Crd})^\text{P}</th>
</tr>
</thead>
<tbody>
<tr>
<td>R6, R3 (Grt–Bt)</td>
<td>0.277</td>
<td>0.727</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>R28, R9 (Grt–Crd)</td>
<td>0.256</td>
<td>–</td>
<td>0.748</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C13, C9, C3 (Grt–Opx–Pl)</td>
<td>0.321</td>
<td>–</td>
<td>–</td>
<td>0.618</td>
<td>0.416</td>
</tr>
</tbody>
</table>

Temperature (°C) at 6 kbar Pressure (kbar) at 700°C

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K_d</td>
<td>5.577</td>
<td>8.000</td>
<td>2.774</td>
<td>P_{M2}</td>
</tr>
<tr>
<td>ln K_d</td>
<td>1.719</td>
<td>2.079</td>
<td>1.020</td>
<td>P_{Re}</td>
</tr>
<tr>
<td>1.</td>
<td>605</td>
<td>674</td>
<td>778</td>
<td>6.01</td>
</tr>
<tr>
<td>2.</td>
<td>585</td>
<td>722</td>
<td>713</td>
<td>6.02</td>
</tr>
<tr>
<td>3.</td>
<td>647</td>
<td>683</td>
<td>735</td>
<td>5.30</td>
</tr>
<tr>
<td>4.</td>
<td>584</td>
<td>666</td>
<td>669</td>
<td>6.23</td>
</tr>
<tr>
<td>5.</td>
<td>596</td>
<td>623</td>
<td>698</td>
<td>4.80</td>
</tr>
</tbody>
</table>

Average 603 ± 26 674 ± 36 719 ± 41 5.77 ± 0.65 5.69 ± 0.60 4.12 ± 0.12 4.27 ± 0.48

Figure 4. a. Topology of phase relations for quartz-free granulites shown in the SiO₂–(Mg, FeO–Al, Fe²⁺, CrO₃) triangular diagram. Small solid circles show plot of mineral compositions and large solid circles represent observed mineral parageneses. b. Topological configuration for kyanite-bearing quartz-free granulites shown in the [SiO₂–6(K₂O + Na₂O)–(Fe, Mg)O–[(Al, Cr, Fe³⁺)₂O₃–(K₂O + Na₂O)] projection from potash feldspar. Small solid circles show plot of mineral compositions.

Figure 5. Comparison of stability field of boron-free kornurperite (marked as reactions 1–3) in the kyanite–sillimanite phase diagram along with P–T estimates for different high-grade rocks from the study area. (i) Chl + Crd + Cm = Krn + V (lower temperature limit). (ii) Chl + Crd + Spr = Krn ± V (lower pressure limit). (iii) Krn = Crd + En + Spr + V (upper temperature limit). 1. P–T conditions for basic granulite.

Yoder. In the MASH system at pressures in the vicinity of 10 kbar and temperatures around 800°C. Robbins and Yoder have experimentally found that boron-bearing kornurperite is a high temperature breakdown product of tomuralite (dravite) at 895°C and 5 kbar pressure.
RESEARCH COMMUNICATIONS

The thermal peak of metamorphism (~850°C) at moderately high pressures of 6 kbar is more than the upper stability limit of kornurupine (Figure 5). This proves that kornurupine was formed after the thermal peak of metamorphism. P–T estimates (700–750°C and 4.5–5.5 kbar) for the associated rocks from the study area lie close to the lower temperature stability field of kornurupine (Figure 5). The presence of iron and lower activity of water may shift the stability field of kornurupine towards the lower temperature side in the FeO–MgO–Al₂O₃–SiO₂–H₂O system.

The absence of anhydrous minerals of granulite facies conditions (orthopyroxene, sapphireine) suggests that kornurupine was formed slightly after the thermal peak conditions of metamorphism during which the activity of water increased, thus providing conditions for the formation of hydrous phases. This observation can further be reinforced by the coarse grain size of kornurupine and its association with other hydrous minerals such as biotite and cordierite, which suggests an increase in the activity of fluids shortly following the metamorphic climax. The estimation of thermal peak of metamorphism at ~850°C also reinforces the observation that kornurupine was formed after the metamorphic peak. The only mineral remnant of the thermal peak is spinel. This type of late post-metamorphic mineral generation due to the influence of fluids from crystallizing partial melts has been reported from Broken Hill, Australia.

3. Lal, R. K., Ackerman, D., Seifert, F. and Haldar, S. K., Chemo-
4. Grew, E. S., Sapphireine, kornurupine and sillinmanite + ortho-
pyroxyene in the charnockitic region of South India. J. Geol. Soc. India, 1982, 23, 469-505.
5. Sajeev, K., Osanai, Y. and Santosh, M., Ultrahigh-temperature metamorphism followed by two-stage decompression of garnet-
9. Goscombe, B., Silica-undersaturated sapphireine, spinel and korne-
urupine granulite facies rocks, NE Strangways Range, Central Aus-
11. Windley, B. F., Ackerman, D. and Herd, R. K., Sapphireine/
kornurupine-bearing rocks and crustal uplift history of the Limpo-
12. Sajeev, K. and Osanai, Y., Ultrahigh-temperature metamorphism (150°C, 12 kbar) and multistage evolution of Mg–Al-rich granul-
13. Kelly, N. M. and Harley, S. L., Orthopyroxene-corundum in Mg–
Al-rich granulites from the Oygarden Islands, East Antarctica. J. Petrol., 2004, 45, 1481–1512.
India, 1984, 56, 202-207.
15. Sharma, I. N., Lal, R. K. and Mohan, A., Chemo-
graphic and metamorphic evolution of orthopyroxene or sillimanite-
bearing garnet–cordierite–gaineses and sapphireine–spinel–corundum granulites from Karimnagar, NE part of the Eastern Dharwar Cra-
ton, India. Geol. Soc. India Mem., 2003, 52, 195-228.
16. Rajeshram, T., Bhaskara Rao, Y. J. and Murri, K. S., The Karimna-
gar granulite terrain – a new sapphireine-bearing granite prov-
17. Grew, E. S., Cooper, M. A. and Howthorne, F. C., Prismanite: Re-
validation for boron-rich compositions in the kornurupine group.
20. Yoder Jr., H. S., The join diopside–pyrope–H₂O at 10 kb: Its bear-
21. Yoder Jr., H. S., Aluminous amphibolite: The MgO-Al₂O₃–
23. Corbett, G. J. and Phillips, G. N., Regional retrograde metamor-
25. Ferry, J. M. and Spear, F. S., Experimental calibration of the parti-
tioning of Fe and Mg between biotite and garnet. Contrib. Min-
26. Dasgupta, S., Sengupta, P., Guha, D. and Fukunaka, M., A refined garnet–biotite Fe–Mg exchange geothermometer and its appli-
27. Bhattacharya, A., Mohanty, L., Maji, A., Sen, S. K. and Rathi, M., Non-ideal mixing in the phlogopite–anne binary solution: Con-
straints from experimental data on Mg–Fe partitioning and a re-
formulation of the biotite–garnet geothermometers. Contrib. Min-
29. Berman, R. G., Internally consistent thermodynamic data for stoi-
chiometric minerals in the system Na₂O-K₂O-CaO-FeO-Fe₂O₃-
Generation of very high resolution gravity image over the Central Indian Ridge and its tectonic implications

T. J. Majumdar*, R. Bhattacharyya and S. Chatterjee

Earth Sciences and Hydrology Division, Marine and Water Resources Group, Remote Sensing Applications and Image Processing Area, Space Applications Centre (ISRO), Ahmedabad 380 015, India

Satellite altimetry can be used to infer subsurface geological structures analogous to gravity anomaly maps generated through ship-borne survey. In this study, free-air gravity image has been generated over the Central Indian Ridge using very high resolution database as obtained from Geosat GM, ERS-1, Seasat and TOPEX/POSEIDON altimeter data. Isostatically compensated regions could be identified with all fracture zones clearly demarcated in this map.

Keywords: Central Indian Ridge, free-air gravity, Geosat geodetic mission, satellite altimetry, seafloor spreading.

ACKNOWLEDGEMENTS. This work was supported by a grant from DST, New Delhi to D.P. and a CSIR, RA grant to I.N.S. Help rendered by Dr Manickam and Dr T. Ghosh, USIC, IIT Roorkee during microprobe analyses is acknowledged. We thank Prof. R. K. Lal and Prof. A. Mohan for useful discussions, and Prof. Grew for his comments. The anonymous reviewers are thanked for their constructive comments that led to substantial improvement in the manuscript.

Received 30 January 2006; revised accepted 29 April 2006

*For correspondence. (e-mail: tjmajumdar@sac.isro.gov.in)