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Forecasting of seasonal monsoon
rainfall at subdivision level
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It is shown that time series data of monsoon seasonal
rainfall at subdivision level is decomposable into six
uncorrelated components. These narrowband processes
called intrinsic mode functions, in decreasing order of
importance, reflect the influence of ENSO, sunspot acti-
vity and tidal cycle on inter annual rainfall variability.
The decomposition helps in proposing a statistical
method to forecast monsoon rainfall in the three sub-
divisions of Karnataka.
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INDIAN rainfall data are available at two spatial scales in the
archives of IITM, Pune (www.tropmet.res.in). The country
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is considered to be consisting of 33 subdivisions for re-
porting the monthly rainfall data for the period 1871-
2004. This is the smaller spatial scale database. Another
database, consisting of the monthly rainfall at the larger
spatial scale of eight regions including one at all-India
level, is also made available. Recently, we have proposed’
an approach to analyse and forecast monsoon rainfall data
of the regional and all-India time series. The method is
based on decomposing the data into empirical modes
called Intrinsic Mode Functions (IMFs). The regional-level
data have a coefficient of variation defined as the ratio of
standard deviation to climatic average (G/m), ranging from
10 to 18%. The efficiency of the IMF model in one-step-
ahead forecasting is about 80%. Thus, the model is able
to capture the most important inter-annual variability sig-
natures on the larger spatial scale. A known property of
rainfall data is that on larger scales, the variability tends
to decrease due to smoothening or averaging effects.
Thus, subdivision-level data will show higher variability
in comparison with regional data. Since IMF model
decomposes the time series into basic uncorrelated em-
pirical modes, one would expect the approach to be quali-
tatively valid at any scale. However, the forecasting skill
will depend on how best the temporal patterns of the sig-
natures are translated into the decomposed modes. The
present investigation is aimed at studying the basic modes
present in subdivision-level rainfall data, with a view to-
wards forecasting the amount of rainfall.

Rainfall data are available for 33 subdivisions (SD),
which make up the geographical extent of the country.
The data have been extensively studied for understanding
spatial and inter-annual variability (IAV) of the mon-
soon>>, Also, the data have been used to study the relation-
ship between rainfall and other atmospheric processes such
as quasi-biennial oscillation (QBO)G, Southern oscillation
index (SOI)” and sunspot index®. In spite of the existence of
long-term variability or memory signatures, quantitative
forecasting of rainfall has remained a daunting task’.
Here, seasonal (June—September) data of three subdivi-
sions are selected for further study. These are SDs 31, 32
and 33 covering the State of Karnataka (Figure 1). This
selection is based on previous studies'® on the variability
structure of station-level rainfall in Karnataka. It was
found that broadly the State comprises of three homoge-
nous regions nearly overlapping with the three IMD sub-
divisions. It was also found that coastal Karnataka (SD-
31) has a significant transition probability structure from
June to July. There is a tendency for below-normal June
rainfall to be compensated by above-normal rainfall in July.
Parthasarathy and Pant’ have shown that rainfall in the
above subdivisions is well correlated with QBO and that
the data are significantly correlated at 14-year lag. The basic
statistics of the data considered here is given in Table 1.

Monsoon rainfall evolves in a random fashion around a
few central periods. This can be seen by spectral analysis,
wavelet or principal component analysis. Recently, it has
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Table 1. Subdivision (IITM data 1871-1990)

Sub- Mean SD COvV

division Name mg Cm. or Cm. (Or /mg) % Skewness Kurtosis

31 COKNT 285.22 50.94 15.42 0.624 4.310

32 NIKNT 60.09 11.96 19.90 0.185 2.847

33 SIKNT 50.33 10.19 20.25 0.334 2.752

Table 2. Central period of the IMFs in years and % variance contributed to IAV
IMF, IMF, IMF; IMF, IMFs

Region T 1AV % T 1AV % T 1AV % T IAV% T 1AV %
COKNT 2.55 60.7 5.71 31.7 12 10.5 18 4.3 40 1.0
NIKNT 3 62.4 5.71 17.6 12 11.9 20 6.6 60 4.1
SIKNT 2.86 69.7 5.45 20.5 10.9 4.5 24 1.6 60 3.1
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Figure 1. Meteorological subdivisions of India and Karnataka.

been shown that the empirical mode decomposition pro-
posed by Huang ez al.'' has distinct advantages over other
methods in identifying the dominant periods and their
amplitudes. This method decomposes the data series into
finite number of empirical modes called IMFs. These are
uncorrelated with each other at zero lag, but correlated
with the original data in a decreasing order of importance.
IMF is a data-derived function such that in its interval of
definition, the number of zeros and extrema is equal or
differs as at most by one. Each IMF is a narrow band
process with an identifiable central period. In Figure 2 a—c,
the present data and their IMFs are shown. The sum of the
IMFs will be equal to the original data at every time instant,
that is R(¢) = YIMF,(r). In each of the figures, data variance
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and variance of each mode are also presented. It is observed
that IMFs can be organized with decreasing level of im-
portance. The sum of variances of IMFs should be ideally
equal to the data variance. However, it is observed that
the last two IMFs get correlated due to round-off errors
and hence the precise decomposition of variance may not
always be achieved.

In Table 2, the central period of the IMFs and the per-
centage of variability explained by each IMF are given.
The last IMF in all the three cases is the climatic normal,
which can be taken to be deterministic. Table 3 shows the
correlation matrix of the IMFs. IMF, is the predominant
mode, with an average period of about 2.7 years, contribut-
ing to more than 60% of IAV. It is also the mode maximally
correlated with the basic data. Like with the regional-
scale data studied previously', here also IMF, and IMF,
are connected with QBO and ENSO, which show quasi-
periodic behaviour with a central period of 2-5 years.
IMF; can be associated with the 11-year sun-spot cycle.
IMF, most probably reflects tidal forcing linked to the
Metonic cycle of 18-19 years. It is important to verity
whether the extracted IMFs are spurious signatures of an
originally uncorrelated random noise data sample. In Figure 3,
the white noise test developed by Wu and Huang'” is applied
on the IMFs of the three subdivisions. For a strict white
noise, the variance of the IMFs and their respective cen-
tral periods varies linearly on a double log plot. Thus for
the data to be accepted as pure noise, all the variance values
have to lie within the 99% confidence band of acceptance.
It is observed that the null hypothesis that original data are
white noise with no patterns gets rejected. This indicates
the possibility of statistical forecasting of the data series
through modelling and forecasting of the IMFs.

A model is a mathematical equation or an algorithm
that can closely replicate the data of a particular length
with minimum error. Since such a model is not unique, the
efficiency of any particular model can only be verified by
comparing it with other claimants in a specified period of
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Figure 2. IMFs of COKNT rainfall (@), NIKNT rainfall (b) and SIKNT rainfall (c).
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Table 3. Correlation matrix
Data IMF, IMF, IMF; IMF, IMFs
COKNT
Data 1.0000 0.7452 0.5126 0.2340 0.1199 0.0279
IMF, 1.0000 -0.0075 -0.0386 —-0.0105 -0.0758
IMF, 1.0000 —0.0880 —0.0958 —0.0356
IMF; 1.0000 0.0025 -0.0517
IMF, 1.0000 —0.0929
IMFs 1.0000
NIKNT
Data 1.0000 0.7615 0.4192 0.2370 0.2417 0.1838
IMF, 1.0000 —-0.0020 -0.0734 —-0.0016 0.0033
IMF, 1.0000 -0.0029 —0.0487 -0.0186
IMF; 1.0000 -0.0342 0.0048
IMF, 1.0000 -0.0378
IMFs 1.0000
SIKNT
Data 1.0000 0.8260 0.4606 0.2406 0.1123 0.1677
IMF, 1.0000 -0.0011 0.0055 —-0.0243 —-0.0340
IMF, 1.0000 0.0369 -0.0141 —-0.0041
IMF; 1.0000 -0.0020 0.0158
IMF, 1.0000 0.0931
IMFs 1.0000
0 X\ ‘ ‘ ‘ ‘ ther, it is seen that IMF, cannot be treated as a Gaussian
R, ¢ o NRNT process, unlike in the case of regional data. On smaller
Sl N :\ ‘ : ° SIKNT | spatial scales, not only does the variability increase, but
\\: also the non-Gaussian and hence the nonlinear character
ANRN of rainfall time series gets accentuated. This necessitates
2 \\\ \g 1 modelling the first two IMFs individually through ANN
K \‘o approaches. The remaining part y; = (R, — IMF;; — IMF,,)
Wl N oo : 1 is nearly Gaussian and can be modelled as a linear process
) \\\ \: separately. It can be observed that as one goes to higher
N Tae L empirical modes, computing IMFs at the end-points be-
“f o \\ R comes difficult. Since the data are available for (i =1, 2,
o 3,...,n), IMFs can be found only for (i=2,...,n—1).
sl \‘\ ] This makes the estimation of linear and nonlinear parts of
5 the data for the last point difficult. This is precisely what
‘ ‘ ‘ ‘ \\\. would be required in a forecasting exercise that makes
o 1 2 3 4 5 6 use of the above type of decomposition. This difficulty is

Figure 3. White noise test for rainfall of three subdivisions. *IMF,
—— Expected for white noise. ---- 99% confidence bands.

time. It is useful to benchmark a model with respect to
the climatic variation explained by it in the modelling pe-
riod. The previous model of the authors' for regional-scale
rainfall had two parts denoted as nonlinear and linear.
The former, which was IMF;, was shown to be amenable for
modelling through artificial neural network (ANN) tech-
niques. The remainder was a stationary random process
modelled with a simple linear representation regressed on
the antecedent five years data. However, in the present
case (R; — IMFy;) at subdivisional level is found to be non-
stationary, as verified through the standard run test. Fur-
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overcome here by making y; depend on the known current
rainfall R;, the previous year value R;, and three past
values of y;. This model has been arrived at based on sev-
eral trials. The coefficients in the equation

Yar1 = CiRy + CR + Cypn + Cayps + Csypu + Co + &,
(D

are found by minimizing the mean square error between
the model and the data in the modelling period (1871-1990).
These are shown in Table 4. The modelling of IMFy; and
IMF,; is carried out using ANN techniques. The architecture
of the neural network model is shown in Figure 4. This
consists of one hidden layer with five nodes, dependent on
five past values. The model needs 36 parameters, which
can be found with the help of MATLAB software using
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Figure 5. Comparison between actual data and hindcasts. a, COKNT;
b, NIKNT and ¢, SIKNT.

the backpropagation algorithm. At any stage, the model
for R; is given by (IMF,; + IMF,; + y;). The efficiency of
this model has been first verified by hindcasting the data
from the model algorithm. In Table 5, the goodness-of-fit
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is demonstrated by presenting three statistics. These are (i)
standard deviation (G,,) of the error € in the model fit, (ii)
correlation between the data and the model hindcast, and
(iii) the performance parameter defined as PP, =1 — G,fl/csfl,
where G,fl is the mean square error and Gfl is the actual data
variance. In a perfect model, 6,(¢) will be zero and both
CC,, and PP,, will tend towards unity. It is observed that
the present model consisting of eq. (1) and IMF, and IMF,
represented through the ANN architecture of Figure 4,
explains 65-70% of the variance of rainfall over the subdi-
visions considered here. In Figure 5, the actual data and
analytical hindcasts obtained from the present model are
shown for a visual comparison of the goodness-of-fit.
Estimation of rainfall for year (j+ 1) based on know-
ledge of data of the current year j and past values of years
(j-1,j-2,...3, 2, 1) is defined as a forecast. If the
process were to be stationary, constants found previously
could be used in eq. (1) for finding y;,; and further
IMF,;,, and IMF, ;,,. In the present case, since statistical
tests indicate the data to be non-stationary, all past data
are used in every year j to find R;,,. The modelling results
are used in a qualitative sense retaining the same ANN
architecture and eq. (1) for updating the model constants
at each step. In Figure 6 a—c year-by-year forecasts along
with observed values are shown for the three subdivisions
of Karnataka. Forecasts are desired as unique numbers or
as point estimates. However, the procedure leading to the
forecast is statistical and hence the prediction has to be
interpreted as a random variable with a definite probability
distribution. The skill of such a forecast has to be evalu-
ated, necessarily again in a statistical sense by carrying
out the exercise on an independent sample. Here this has
been carried out for the period 1991-2004, as shown in
Figure 6 a—c. In Table 5, the forecast skill measures, namely
0s(¢), CC; and PP are presented. With a length of 14
years, correlation between observed and forecast values
can be taken to be significant if it is higher than about
0.55. It is seen that the forecast skill of the present metho-
dology is much above the threshold of significance. The
performance parameters are quantitatively less than the
ones during the modelling period. This is clearly attribut-
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Table 4. Coefficients of eq. (1)
Region C, C, Cs Cy Cs Cs Gy(g) CC
COKNT  0.0793 0.0246 1.8409 -2.8216 1.3164 160.1436 16.7992 0.6380
NIKNT 0.0304 -0.0053 3.6532 -5.2693 2.2582 20.0185 3.4299 0.8128
SIKNT 0.0023 -0.0119 3.6290 -5.1141 2.1857 15.7583 1.8636 0.8004
Table 5. Performance index
Modelling period (1872-1990) Forecasting period (1991-2004)
Region Gn(€) CC,, PP, o5(€) CCs PP
COKNT 30.13 0.81 0.65 24.18 0.77 0.53
SIKNT 5.21 0.85 0.72 6.65 0.83 0.68
NIKNT 6.31 0.86 0.71 5.95 0.69 0.53
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Figure 6.

able to the short length of 14 years of forecasting regime.
As the forecast exercise length increases, the performance

parameter PP, would approach PP,
A novel statistical approach for

rainfall at subdivision level has been proposed here. This
is an extension of our previous work' on forecasting all-
India and regional rainfall using empirical mode decom-
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Vonr

Independent test forecasting. @, COKNT; b, NIKNT and ¢, SIKNT.

position. It is recognized that seasonal monsoon rainfall
on a given space regime exhibits specific patterns on a

few preferred timescales. The subdivision data studied

forecasting monsoon
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here show higher coefficients of variation than the larger-
scale regional data series. Like the regional data, the pre-
sent data also get decomposed into six uncorrelated IMFs.
These can again be interpreted in decreasing order of im-
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portance, as being related to ENSO, sunspot and tidal
phenomena. The modelling and forecasting skill of the
proposed method has been demonstrated to be statistically
significant. Apart from the statistics reported in Table 5, re-
sults of Figure 6 a—c are interesting. It is observed that
the nature of departure from long-term average (normal)
rainfall has been foreshadowed correctly in eleven out of
fourteen years. Even in years where the forecast appears
to be poor, the value is within a known error band. Persis-
tence of drought-like conditions in SIKNT and NIKNT
during 1999-2003 has also been captured by the present
model in a forecast mode. In comparison with regional-
scale rainfall, the present data show lower levels of mod-
elling and forecasting efficiency measured in terms of PP,
and PP, This is attributable to the higher coefficient of
variation and lack of stationarity property with the present
data series. The efficiency of the present method for
modelling other subdivisions which have still higher levels
of (o/m) value is yet to be investigated.
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Quick look isoseismal map of
8 October 2005 Kashmir earthquake

A. K. Mahajan*, Naresh Kumar and B. R. Arora

Wadia Institute of Himalayan Geology, 33 GMS Road,
Dehradun 248 001, India

The isoseismal map for the devastating M 7.6 Kashmir
earthquake of 8 October 2005 is constructed based on
the immediate damage scenario provided by the teach-
ers trained under the Himalayan School Earthquake
Laboratory Programme as well as that reported in
electronic and print media. The nature of the damage
pattern imprinted on different vulnerable classes of
buildings at some 80 sites enabled to map out intensity
distribution in earthquake-affected region to a value
above IV on the European Macroseismic Scale (EMS-
98). The isoseismal map provides a fair picture of the
distribution of ground-shaking effects to distant places.
This would serve as a useful guide in future earth-
quake hazard assessment in the region. The Kashmir
valley was widely affected and the meizoseismal zone
encompassing the township of Balakot and Muzzafra-
bad experienced a maximum intensity of XI on the
EMS-98 scale. The use of this maximum intensity and
the dimension of the area covered by isoseismal VI in
the well-established intensity—focal depth and intensity—
moment relations respectively, allowed for estimating
the focal depth and the magnitude. Since in the present
approach, the map is prepared based on the damage
scenario immediately after the main shock, it will be
free from biases due the subsequent damages caused
by aftershocks that advertently tend to contaminate
the maps prepared by conventional field surveys.

Keywords: Focal depth, Kashmir earthquake, intensity
distribution, isoseismal map, magnitude.

THE Mw 7.6 worst ever earthquake shook the Kashmir
valley on 8 October 2005 at 03:52 UT (09:22 IST). The
shallow focus earthquake (depth 10 km) with its epicentre
(34.432°N, 73.537°E, USGS), ~124 km to the west of Srina-
gar, caused widespread destruction and casualties (>50,000)
in the region. In the west, the event was widely felt in
Pakistan and Afghanistan and in the east shaking of the
earth was felt as far as Himachal, Punjab, Haryana, Uttaran-
chal, Delhi, Rajasthan, Gujarat and western Uttar Pradesh.
Earlier also this region experienced a number of moderate
and major earthquakes. Among those the most recent
ones are the Northwest Kashmir earthquake of 2002 (M
6.4) and Pattan earthquake of 1974 (Mw = 7.4)1. Previous
destructive earthquakes in the Kashmir valley that occurred in
1555 (magnitude not known), 1885 (Mw 7.5), 1842 (Mw
7.5 Kinnuar) and the Kangra earthquake of 1905 (Mw 7.8)
are reported at http://asc-india.org/events/051008 pak.htm.

*For correspondence. (e-mail: mahajan@ wihg.res.in)
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