through e-mails if the INSA has problem in taking care of the expenses for their attendance in the meeting. It is high time that the fellows of such a National Academy debate and review its role and restructure various committees and role for widening interest. The academy must ensure that the young Indian minds must be included and membership must be given to active scientists in the national committees. We must also try to see the way China is bringing changes for the growth of science and technology in their country. The Chinese Government is inviting their scientists who are living in US/Canada to spend few years in developing areas/fields in China by matching their salaries in US/Canada. In all scientific assemblies being held abroad, a handful of young and senior scientists are being deputed to represent their countries in a coordinated manner and there is no doubt that they are being more visible and they are playing an important role in projecting their countries. We must respect the sentiments of our seniors but at the same time we must convince and support them to make changes to bring more visibility and accountability to the money we spend and to our contribution.

RAMESH P. SINGH
Department of Civil Engineering, Indian Institute of Technology, Kanpur 208 016, India
e-mail: ramesh@iitk.ac.in

Computers and physics experiments

The debates and discussions concerning physics students’ dwindling interest in doing experiments are not new. Yet, with newer inputs this debate occasionally takes some interesting turns. And ‘doing’ virtual experiments on a computer screen is a case in point.

Students with access to computers actually enjoy ‘doing’ experiments on the computer screen. A ‘virtual’ and simulated experiment is indeed nice on the computer screen, if you have the right software. Moreover, a section of the teachers feels that it would be more useful if these experiments can be shown to many students at one time. Then what about conventional approaches where students need to actually do the experiments by using their hands and mind? After all, these are the experiments we do assign to students in their plus-two or UG classes. Is it a sheer waste of time or does it really guide a student towards the right way of learning? Or should the students feel content with what they have seen on the monitor of a computer and not bother to enter the laboratory to have a hands-on experience with different equipment, materials and real life data?

On the other hand, in a computer-based experimentation, the computer offers a variety of opportunities: the density of a gas can be increased to a value that only liquids can have, one spring balance on the screen can measure weight range from one milligram to ten kilograms, the magnetic field can be raised to, say, 100 tesla to show the appreciable deflection of a charged particle that has entered the magnetic field, etc. However, it is difficult to design real-life experiments, either as a demonstration or as a laboratory experiment, where one physical phenomenon can be observed and the measurements are straightforward or the influence of one factor is not masked by another. The experiments in the UG curriculum of different universities are reasonably well chosen keeping these aspects in mind. These are, so to speak, real experiments involving statistical variation in data, and have their own limitations and are different from simulated experiments.

However, we cannot afford to forget that a large number of experiments designed for research work are actually computer-based. The data acquisition systems therein can be quite efficient with proper selection of software and some hardware aspects of the computer. Computer users have entered the world of experiments in a big way, but researchers are using them only as a tool. It is the researchers who design and run the experiments; the computer only collects and records the generated data through some sort of interfacing. The computer can be used to analyse the data and carry out necessary calculations, if instructed to do so and present the results in a graphical form. However, unlike in virtual experiments, the computer never ‘does’ the experiment.

All these aspects lead to the question as to how we should train our physics students, say the UG students, in experimental physics. It is understandable that the high school or the plus-two level experiments need to be direct and should be done ‘by hand’ as that is the entry level playing arena in the field of experiments. But for the UG level, can we plan to have at least one or two experiments that will involve a computer as an equipment for acquisition of data through suitable interfacing? Can we give the students some flavour of the state-of-the-art facilities that are present in the research laboratories? This may help us to send a message to the students that the computer is not only meant for virtual experiments using the monitor, but real experiments can also be done using the computer as an ‘assistant’. The computer actually obviates the instructions of an experimenter. A wide range of development in this front using suitable interfacing techniques is taking a new turn. Simple PCs could be developed into powerful devices in the laboratory. These lead to laboratory automation but the extent and degree can be controlled by the designer of the experiment with adequate software support. Such uses of computers in the laboratory will encourage students to look at them in the right perspective.


BHUJAPATI CHAKRABARTI
Department of Physics, City College, Kolkata 700 009, India
e-mail: dibhu9@cal3.vsnl.net.in