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Adenosine 5’-triphosphate (ATP) is considered to be a
useful indicator of life in soil and the adenylate energy
charge (AEC) indicates the energetic status of soil mi-
croorganisms. ATP concentration and AEC levels have
been extensively studied in a diverse group of soils.
However, little knowledge is available on the levels of
ATP and AEC in soils of mangroves. We report here
the levels of adenylates ATP, adenosine di-phosphate
(ADP) and adenosine monophosphate (AMP)) and
AEC in soils of undisturbed mangroves of South-,
Middle-, North- and Little-Andamans. Relevant soil
physico-chemical and microbial parameters and their
relationship to ATP and AEC were also examined.
Averaged across various mangrove sites, total N level
was 1.44 +0.13 gkg™, organic C 15.6 + 1.5 gkg™, mi-
crobial biomass C 410 = 35 ug kg™', microbial biomass
N 34+ 2 pg kg™ and qCO; 41.1 + 4.4 mg CO, (g bio-
mass C)"'d'. Among the adenylates, ATP ranged
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from 2.32 to 3.22 nmol g™ (mean 2.87 + 0.29), AMP from
0.21 to 0.29 nmol g‘1 (mean 0.25 £ 0.03) and ADP from
0.41 to 0.48 nmol g™ (mean 0.44 * 0.03). Across sites,
the average microbial biomass C/organic C ratio was
2.6 £ 0.2% and microbial biomass C/N ratio at the
mangrove sites was wider and ranged from 11.2 to
14.5 with a mean of 12.0 £ 0.9, The ATP/microbial
biomass C ratio ranged from 6.0 to 8.2 pumol g with a
mean of 7.0 + 0.6 pmol ¢!, markedly lower than the
worldwide average of 10-12 umol g reported in a
wide range of soils. Lower ATP/microbial biomass C
ratio in our mangrove soils is most likely due to a
changed microbial community structure indicating a
decomposition pathway dominated by fungi and mi-
croorganisms with large microbial biomass C/N ratio.
The AEC levels were consistently >8.0 (mean 0.87) at
all the sites, suggesting that the majority of microorgan-
isms in these mangrove soils are probably dormant.

Keywords: Adenylates, ATP, ATP/microbial biomass
C ratio, adenylate energy charge, mangrove forests.

ADENOSINE 5’-triphosphate (ATP) occurs in all living
cellsl, but exocellular ATP has a half-life of less than 1 h.
The ATP content is, therefore, considered a useful indicator
of life in soil? Besides, there is substantial evidence to
suggest that the soil microbial biomass maintains an ATP
concentration typical of microorganisms undergoing ex-
ponential growth in vitro™*. However, the soil microbial
populations are supposed to be predominant in a dormant
state with low metabolic activity and low turnover rates’.
It was proposed that the energetic status of soil microor-
ganisms can be evaluated by determining the adenylate
energy charge (AEC)®. In cultures of microorganisms in
vitro, AEC values >0.8 indicate actively growing cells,
values from 0.5 to 0.7 represent dormant cells that are in-
capable of biosynthesis, and values <0.4 occur only in
dead or dying cells’. Pioneering work on adenylates (ATP,
adenosine di-(ADP) and monophosphates (AMP)) and
AEC in soils was done by Jenkinson and co-workerss’9, as
well as Brookes and co-workers®'’. Subsequently, Contin
et al.” combined appropriate published data on ATP avail-
able up to 1996 and some of their own results in addition to
Jenkinson’s data’ to reexamine the literature on ATP and
microbial biomass relationships in a wide group of soils
from the northern hemisphere, southern hemisphere and
Japanese paddy-dryland crop rotation. Notably, this in-
cluded soils under different management regimes encom-
passing arable, grassland and woodland soils. More recently,
the literature base of ATP and biomass relationship was made
larger and diverse by Joergensen and co-workers™''™"’
through their excellent work on a wide group of soils of
temperate and tropical ecosystems. Various other published
data on adenylates in soils also exist'*"".

However, information on adenylates especially ATP
and AEC in soils under the mangroves is limited. Man-
groves are one of the most unique and endangered eco-
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systems of the biosphere covering 60-70% of the tropical
coasts, especially in India, Thailand, the Philippines, Mala-
ysia, Indonesia, Bangladesh and Papua New Guinea. In
India, mangroves occur mostly in the west coast (Kerala,
Karnataka, Goa, Maharashtra, Gujarat, coral atolls of
Lakshadweep islands), and east coast (Tamil Nadu, An-
dhra Pradesh, Orissa, West Bengal, and the Andaman and
Nicobar Islands). Among these, mangroves of the Anda-
mans are considered to be the most luxuriantlg, covering
about 77,769 ha'®.

For the study, four undisturbed mangroves sites were
selected from each district of the Andamans (10°30-
13°42’N lat. and 92°14’-94°16’E long.) and 20 random
cores (0—15 cm, 7 cm @) were taken from each site. The
soils were then sieved (<2 mm), and analysed for their
moisture content. Sub-samples for the determination of
organic carbon and total N were sieved to pass through a
0.5 mm mesh. Soil pH was determined in a 1:2.5 soil:
water suspension, organic C by the Walkley Black
method"’, total N by the Kjeldahl method®’, clay content
by the pipette method”' and cation exchange capacity
(CEC) by the method of Gillman®. The microbial bio-
mass C and N were estimated by fumigation-extraction®’
using a factor of 0.45 (ref. 24) and 0.54 (ref. 25) respec-
tively. The adenylates (ATP, AMP and ADP) were esti-
mated by the procedure of Dyckmans and Raubuch®
Dimethylsulphoxide (DMSO), Na;PO,-buffer (10 mM),
EDTA (20 mM) and a nucleotide-releasing buffer (ben-
zalkonium chloride containing 2 mM Mg-EDTA, 10 mM
ammonium acetate and 20 mM THAM, pH 7.75 with ace-
tate)'' were used as extractants. The energy status of soil
microorganisms was evaluated by determining AEC,
which is defined as: AEC = (ATP + 0.5 x ADP/(ATP +
ADP + AMP)”’. The metabolic quotient (qCO,) was de-
termined by measuring basal respiration (CO, evolution)
in moist soil samples adjusted to 55% of its water-holding
capacity. Briefly, the samples were pre-incubated for 3
days at 20°C in the dark followed by measuring CO; pro-
duction for another 3 days by trapping CO, in 0.05M
NaOH. CO, production was then measured by titration of
the excess NaOH with 0.05 M HCI. The metabolic quo-
tient was calculated using the formula: (ugCO,-C evolved
in 3 daysg' soil)/(ug biomass Cg ' soil)/3 daysx
1000 = mg CO,—C g”' biomass C per day'. All values re-
ported are means of 20 determinations expressed in an
oven-dry basis (24 h at 105°C).

The results (Table 1) revealed that soil pH varied in a
narrow range of 5.20-6.05, clay between 19 and 27%,
CEC between 212 and 268 umol g”', total N between
1.31 and 1.83 gkg' and organic C between 13.9 and
19.8 g kg™'. Among the microbial characteristics, micro-
bial biomass C varied from 366 to 478 ug.g ' (mean
410 £35) and microbial biomass C/organic C ratio from
2.3 to 3.1% (mean 2.6 +0.2; Table 2). The biomass C
constitutes up to 5% of total organic C**. However, ratios
varying from 0.27 to 7.0% have been reported from soils
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Table 1. Relevant physico-chemical properties of soils of various mangrove sites in the Andamans

pH Clay CEC Organic C Total N

Location (1:2.5H,0) (%) (umol. g™) (gkg™ (gkg™
South Andaman

Collinpur 5.21 (0.04) 19 (2) 216 (22) 14.6 (1.6) 1.37 (0.16)

Shoal Bay 5.32 (0.08) 23(2) 231 (21) 19.8 (1.3) 1.83 (0.24)

Crikabad 6.04 (0.05) 24 (3) 212 (19) 14.3 (2.2) 1.32 (0.17)

Namunagarh 5.71 (0.09) 26 (2) 232 (21) 16.9 (1.9) 1.42 (0.11)
Middle Andaman

Baratang 5.43 (0.05) 21 (4) 236 (24) 17.1 (2.7) 1.62 (0.14)

Kadamtala 5.62 (0.08) 24 (3) 248 (23) 14.6 (3.0) 1.31 (0.18)

Betapur 6.05 (0.08) 20 (3) 222 (24) 14.1 (1.7) 1.32 (0.12)

Nimbutala 5.27 (0.07) 24 (4) 253 (26) 14.2 (1.7) 1.38 (0.12)
North Andaman

Kalighat 5.62 (0.05) 20 (3) 261 (23) 15.6 (2.1) 1.42 (0.21)

Austin Creek 5.36 (0.06) 21 (5) 268 (24) 16.2 (1.4) 1.51 (0.22)

R. K. Puram 5.42 (0.08) 23 (5) 221 (16) 16.5 (2.1) 1.50 (0.16)

Paschim Sagar 5.63 (0.08) 25 (3) 228 (14) 16.3 (2.5) 1.48 (0.16)
Little Andaman

Nethaji Nagar 5.21 (0.05) 24 (3) 233 (21) 16.0 (1.6) 1.46 (0.13)

Harbinder Bay 5.20 (0.08) 26 (3) 241 (15) 13.9 (1.7) 1.28 (0.21)

Vivekanandapuram  5.62 (0.08) 24 (4) 262 (23) 15.3 (2.1) 1.41 (0.21)

Dugong Creek 5.56 (0.04) 27 (4) 260 (26) 14.6 (2.7) 1.43 (0.21)
Mean + SD 5.521+0.26 23.2+23 239x17 156+ 1.5 1.44+0.13

Values in parentheses indicate standard error of mean.

Table 2. Microbial properties of soils of various mangrove sites in the Andamans

CMICa NMICb qCOz mg COZ CMIC/organic C

Location (ngeg™ (ng g™ (g biomass €)' d”" (%) Camic/Nuie
South Andaman

Collinpur 366 (49) 32 (3.1) 39.6 2.5 11.4

Shoal Bay 462 (37) 39 (3.0) 47.2 2.3 11.8

Crikabad 444 (18) 37 (2.4) 51.2 3.1 12.0

Namunagarh 450 (18) 34 (1.8) 43.8 2.7 13.2
Middle Andaman

Baratang 478 (37) 33 (2.0) 48.5 2.8 14.5

Kadamtala 402 (14) 36 (2.2) 38.8 2.7 11.2

Betapur 410 (23) 35(1.9) 34.9 2.9 11.7

Nimbutala 371 (14) 32 (1.6) 41.0 2.6 11.6
North Andaman

Kalighat 383 (21) 32 (2.4) 38.1 2.4 12.0

Austin Creek 412 (31) 35 (3.6) 37.9 2.5 11.8

R. K. Puram 414 (36) 32 (3.4) 39.4 2.5 12.9

Paschim Sagar 421 (24) 35 @2.7) 38.0 2.6 12.0
Little Andaman

Nethaji Nagar 414 (39) 34 (2.5) 40.3 2.6 12.2

Harbinder Bay 374 (36) 33 (3.6) 40.6 2.7 11.3

Vivekanandapuram 384 (21) 34 (4.1) 38.3 2.5 11.3

Dugong Creek 370 (22) 32 (2.8) 40.2 2.5 11.6
Mean * SD 410 %35 34+2 41.1+44 26102 12.0+£0.9

*Cwmic, Microbial biomass C; ° Nyc, Microbial biomass N; Values in parentheses indicate standard error of mean.

across different management systems, sampling times and
analytical methods®. The microbial biomass N ranged
from 32 to 39 ug g~ (mean 34 % 2; Table 2). This is lower
than the range (41-54 pg g ') reported under moist decidu-
ous and semi-evergreen forests of the Andamans”, but al-

1260

most identical to the range (32-36 ug g ') reported under
secondary tropical forest sites of the Philippines'

Among the adenylates (Table 3), AMP ranged from
0.21 to 0.29 nmol g~ (mean 0.25 + 0.03), ADP from 0.41
to 0.48 nmol g’1 (mean 0.44 +0.03) and ATP from 2.32

CURRENT SCIENCE, VOL. 90, NO. 9, 10 MAY 2006



RESEARCH COMMUNICATIONS

Table 3. Levels of adenylates (ATP, AMP, ADP), AEC and ATP/Cy;c ratio of soils of various mangrove sites in the

Andamans
ATP AMP ADP ATP/Cyic

Location (nmol g") (nmol g") (nmol g") AEC (pmol g")
South Andaman

Collinpur 2.50 (0.14) 0.29 (0.04) 0.47 (0.08) 0.84 6.8

Shoal Bay 3.02 (0.12) 0.24 (0.06) 0.46 (0.08) 0.87 6.5

Crikabad 3.10(0.32) 0.24 (0.05) 0.48 (0.06) 0.87 7.0

Namunagarh 3.21(0.21) 0.27 (0.05) 0.43 (0.04) 0.87 7.1
Middle Andaman

Baratang 3.22 (0.18) 0.26 (0.04) 0.48 (0.04) 0.87 6.7

Kadamtala 2.52(0.22) 0.28 (0.06) 0.48 (0.06) 0.84 6.3

Betapur 2.76 (0.14) 0.25 (0.06) 0.41 (0.07) 0.87 6.7

Nimbutala 2.43 (0.23) 0.28 (0.03) 0.42 (0.06) 0.84 6.5
North Andaman

Kalighat 2.32 (0.17) 0.21 (0.02) 0.41 (0.05) 0.86 6.0

Austin Creek 2.98 (0.19) 0.25 (0.02) 0.42 (0.05) 0.87 7.2

R. K. Puram 2.84 (0.21) 0.25 (0.03) 0.43 (0.03) 0.87 6.8

Paschim Sagar 3.12 (0.09) 0.26 (0.05) 0.48 (0.07) 0.87 7.4
Little Andaman

Nethaji Nagar 3.11 (0.13) 0.21 (0.05) 0.45 (0.07) 0.88 7.5

Harbinder Bay 2.82 (0.15) 0.22 (0.04) 0.41 (0.04) 0.88 7.5

Vivekanandapuram 3.17 (0.19) 0.25 (0.05) 0.41 (0.05) 0.88 8.2

Dugong Creek 2.81 (0.09) 0.21 (0.04) 0.43 (0.05) 0.87 7.6
Mean £ SD 2.87+0.29 0.2510.03 0.44+0.03 0.87+£0.01 7.0+ 0.6

Values in parentheses indicate standard error of mean.

to 3.22 nmol g (mean 2.87 +0.29). Average ATP levels are
reported to be 4.2 umol g~ in grassland soils, 2.1 umol g™
in forest soils and 1.2 pmol g”' in arable soils'®. We also
observed a positive correlation between biomass C levels
and ATP (r=0.68 at P < 0.001, n = 160) and sum of ade-
nylates (» = 0.65 at P <0.001, n = 160), which suggested
that soils with greater biomass C levels are most likely to
possess higher ATP levels. A similar relationship was ob-
served in a large group of soils under different manage-
ment regimes™'”.

The mean ATP/microbial biomass C ratio (Table 3) was
7.0+ 0.6 umol g~ (range 6.0-8.2; Table 3). This is mark-
edly lower than the average value of 11.7 umol g™ and
the geometric mean of 10.5 umol g~' reported in a wide
range of soils of the northern and southern hemispheres
under diverse management regimes™”. It is pertinent to
note that ATP levels in these studies were determined using
the enzymatic luciferin/luciferase system. However, in recent
studies wherein ATP was determined using the DMSO
extractant, ATP/microbial biomass C ratio ranged between
3.1 and 5.2 umol g”' in secondary tropical forest sites'”,
between 3.2 and 8.9 pmol g”' in soils amended with glu-
cose’ and between 4.1 and 5.6 umol g”' in wet tropical
forests of the Andamans'’. In the present study also, ATP
was determined using the DMSO extractant. The mean
ATP/microbial biomass C ratio of 7.0 + 0.6 umol g~ in our
mangrove soils is close to the average value of 8.7 umol g™
observed in arable soils® and almost identical to the mean
ATP/biomass C ratio of 7.1 umol g reported recently in a

CURRENT SCIENCE, VOL. 90, NO. 9, 10 MAY 2006

wide range of forests, grasslands and arable soils'"’. They
have excluded the possibility of incomplete extraction of
the added ATP to be the major reason for such lower
ATP/microbial biomass C ratios because of the high ex-
traction efficiency (between 90 and 95%) of the alkaline
DMSO extractant. Therefore, the most plausible explana-
tion for the relatively low average ATP/biomass C ratio
in the mangrove soils compared to those of Jenkinson’
and Contin et al.* could be differences in the soil microbial
community structure’. Probably, the microbial community
structure of our mangrove soils is dominated by fungi and
microorganisms with large microbial biomass C/N ratio.
The microbial biomass C/N ratio is considered to be an
indicator of the relative proportion of fungi to bacteria’'.
Consequently, wider ratios (range 11.2-14.5, mean 12.0 £
0.9; Table 2) indicate that fungi dominated these man-
grove soils compared to bacteria. Similar observations
were made in forest floor layer and acidic forest A horizon
dominated by fungi®> and microorganisms with a large
biomass C/N ratio”. They > attributed this to higher C
availability coupled with relatively low N availability due
to which the production of enzymes involved in the
metabolic pathways producing ATP is inhibited. Earlier
reports on distribution of microorganisms in mangrove
soils and waters from the Southern region along the coast
of the Andaman Sea and the Gulf of Thailand, also indi-
cate that fungi dominate bacteria and algae™. About 60
fungal species were identified, out of which Aspergillus
sp., Penicillium sp., Trichoderma sp., Fusarium sp. and
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Rhizoctonia sp. were found to be the most frequent in
mangrove soils of the Andamans™.

AEC, which indicates the energy status of soil micro-
organisms ranged from 0.84 to 0.88 (mean 0.87; Table 3).
AEC levels ranging from 0.67 to 0.74 under secondary
tropical forest sites of the Philippines'” and those ranging
from 0.85 to 0.87 under the moist deciduous and semi-
evergreen forests of the Andamans'’ have been reported.
Nevertheless, values ranging from 0.3 to 0.9 have been
observed in a wide range of s0ils®. AEC levels > 8.0,
similar to those observed in our mangrove soils, have
been described in soils where majority of the microorganisms
are probably dormant'®*. It is also plausible that highly
active microorganisms have large metabolic quotient
(qCOy) coupled with large ATP/biomass C ratios and high
AECY. However, no significant relationship between
these three indices has been found in soils"’. Though sig-
nificant correlation between AEC and qCO, has been ob-
served36, the relationship between these two in our
mangrove soils was non-significant. We also did not observe
any significant relationship between AEC and individual
parameters like pH, CEC, clay, organic C, total N, etc.
Therefore, it is still not clear as to how soil microorgan-
isms maintain such high AEC levels, similar to actively
growing microorganisms in vitro®. Nevertheless, it has
been hypothesized that the survival strategy of soil microor-
ganisms is based on a resting population expending energy
to maintain a state of metabolic alertness for immediate
use of any exogenous substrate’®. Therefore, an unknown
combination of different factors like quantity and quality
of soil organic matter, texture, pH, etc. seems to influence
AEC levels in soils™.

Overall, the mean ATP levels in our mangroves soils
(0-15 cm) was 2.87 £0.29 pmol g and the mean ATP/
microbial biomass C ratio was 7.0 0.6 pmol g, consi-
derably lower than the worldwide average of 10-12 umol g"'
ATP g' biomass C observed in a wide range of soils™”.
This apparent discrepancy is most likely due to a changed
microbial community structure possibly dominated by
fungi and microorganisms with large microbial biomass
C/N ratio. The mean AEC level of 0.87 is within the range
of 0.3-0.9 observed in a large group of soils’. However,
AEC values >8.0 indicate that majority of microorganisms
in our mangrove soils are probably dormant. It also needs
to be emphasized that the data presented are from soils
sampled before the tsunami struck the shores of the An-
daman and Nicobar Islands on 26 December 2004. Never-
theless, it can be presumed that variation in the adenylate
and AEC levels between the pre- and post-tsunami soil
samples would be minimum due mainly to the fact that
mangroves are frequently inundated by sea water during
periods of high tide. However, at sites that have been
permanently submerged post-tsunami, variation in the levels
of adenylates, ATP/microbial biomass C ratio and AEC
from those reported by us is a distinct possibility.
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Biosorption of metals from
contaminated water using seaweed

V. Vinoj Kumar* and P. Kaladharan
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Heavy metals are major pollutants in marine, lake and
groundwaters as well as in industrial and even treated
effluents. Biosorption, an inexpensive and reliable method
to remove cadmium and lead ions from solution using
dry seaweed biomass as adsorbents, was investigated.
Sargassum wightii exhibited maximum metal uptake
at pH 4-5 and the value ranged from 18% to 29% of
dry biomass. The kinetics of metal adsorption was fast
with 70-80% taking place within 30 min. Based on these
results, a biobattery involving perforated columns
packed with pulverized dry biomass of S. wightii was
designed, which could remove metals in the range of
50-97% from a multi-metal ion solution within two
and a half hours. The mechanism of metal sorption by
seaweeds and the advantages of the present design of
seaweed columns are discussed in the light of ecofriendly
and cost-effective approach for effluent treatment.

Keywords: Biobattery, biosorption, effluent treatment,
heavy metals, Sargassum wightii.

HEAVY metals can be extremely toxic as they damage
nerves, liver, kidney and bones, and also block functional
groups of vital enzymes'. Stringent environmental legis-
lation and powers of the authoritative bodies established
to enforce these regulations are increasing the demand for
new technologies to remove metal from wastewater. For
more than a decade, researchers have been looking for
cheaper and more effective methods to remediate heavy
metal-contaminated waters and reduce the growing public-
health risk. Biosorption is proven to be quite effective at
removing metal ions from contaminated solution in a low-cost
and environment-friendly manner’. The major advantages of
biosorption over conventional treatment methods include
low cost, high efficiency of metal removal from dilute so-
lution, minimization of chemical and/or biological
sludge, no additional nutrient requirement, regeneration
of biosorbent and the possibility of metal recovery’.
Bacteria4, fungis, marine algaeG’7, etc. have been studied
for their heavy metal uptake capacities and suitability to
be used as development of biosorbents. Biosorptive capaci-
ties of seaweeds, activated carbon and natural zeolites have
been evaluated and are comparable to those of synthetic
ion-exchange resins’. Marine macro-algae are harvested
or cultivated in many parts of the world and are therefore
readily available in large quantities for the development
of highly effective biosorbent materials. This study inves-
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