and Trademarks Office shows that from 1969 to 1994, CSIR had only 47 patents to its credit (coinciding with the time India recognized only process patents and not product patents, especially in pharmaceuticals, food and agrochemicals). With CSIR rising to proactively propagate the importance of patents in India, a multi-pronged approach is required to spread knowledge about intellectual property and patents. Universities, industry and government will have to take proactive steps to take proactive steps to ensure that the nation is literate in terms of patents in the coming years.


MANTHAN D. JANODIA1
J. VENKATA RAO2
N. UDUPA1∗
1Department of Pharmacy Management,
2Department of Pharmaceutical Biotechnology,
Manipal College of Pharmaceutical Sciences,
MAHE,
Manipal 576 104, India
∗e-mail: n.udupa@manipal.edu

Is Kappaphycus alvarezii heading towards marine bioinvasion?

Pereira and Verleca have stated that an exotic marine algal species, Kappaphycus alvarezii, is on the verge of becoming invasive in southern India. They have further stated that scientist-divers have reported that this alga has started spreading in the Gulf of Mannar region and may affect other marine flora. There is a fear that it may propagate through spores which could lead to a bioinvasion. Another concern, according to them, is that the seaweed absorbs high amounts of nutrients from sea water.

The Central Salt and Marine Chemicals Research Institute (CSMCRI), Bhavnagar procured a few fragments of the above alga more than a decade ago, observing all protocols of introduction and quarantine. After acclimatization and laboratory culture, the alga was introduced in the sea in confined conditions - employing a novel bag technology - initially in the Gujarat coast and later in Mandapam, Tamil Nadu. Although the alga introduced by CSMCRI was of foreign origin, it was cited subsequently on the Andaman coast by Rao and Umamaheshwar Rao. However, drifted K. alvarezii was reported from Okha coast as early as 1970 by Krishnamurthy and Joshi.

Maini et al. observed liberation of tetraspores and carpospores from the above alga, but the germings from these spores did not survive beyond 1–4 days in the majority of cases. Tetraspores were also reported by Paula et al., but these authors too have confirmed the mass mortality of spores in germination experiments. The above observations may help explain why no trace of the alga was found in the open waters during all the years of its cultivation in confined bags in the Mandapam area. After initiating K. alvarezii cultivation in unconfined conditions, i.e. in net bags and monoline, in 2000, as part of a DBT-sponsored project to make the cultivation practically viable, an EIAR study was carried out by CSMCRI. No significant adverse effect on the ecosystem was observed except for depletion of nutrients in the immediate vicinity of cultivation due to its uptake by the seaweed. Bioinvasion of K. alvarezii is evidently not a facile process since there is no reported natural stock anywhere in the world, and the alga has become available in large scale only through cultivation, in countries such as Philippines and Indonesia. According to Pereira and Verleca although a few seaweeds have been listed as invasive, K. alvarezii is not one of them.

Regarding the issue of reduction in nutrient levels in sea water, the sea has a large pool of nutrients and, even though there may be temporary decline in the nutrient level as a result of cultivation, this has no adverse impact. No significant effect was found on daily growth rate of K. alvarezii, even though it needs nutrients from sea water to grow. Grazing of the plants by fish was a menace that had to be tackled, but this was a good indicator of the health of the water. In fact, fishing near the cultivation site is becoming a popular activity. It will be appreciated that seaweeds help oxygenate waters through photosynthesis and this could help alleviate the anoxic condition of Indian coastal waters reported recently.

The successful development of K. alvarezii cultivation technology in Indian waters, and the unprecedented interest in seaweed cultivation witnessed since transfer of the knowhow, is important for several reasons: (i) declining fish catch that has made it imperative to look for ways of supplementing incomes of the coastal population, (ii) invention of a novel technology that yields large volumes of seaweed sap rich in plant growth promoters and potash from freshly harvested alga, in addition to κ-carrageenan-containing residue, (iii) environmental gains through CO2 sequestration and O2 generation through photosynthesis, and (iv) introduction of a new sustainable cultivation that requires no arable land, no irrigation water and no fertilizer. Availability of indigenous κ-carrageenan will also open up the possibility of producing animal gelatin substitutes and biodegradable plastic, apart from its conventional uses. All aspects of the work undertaken with the alga so far were debated at the symposium organized by Aquaculture Foundation of India at Mandapam. It was recommended that cultivation of the alga is safe and promising. Cultivation has also been recommended by the National Academy of Agriculture.

As a responsible national laboratory that introduced K. alvarezii in India, we are duty bound to continuously monitor the environmental impact of large-scale cultivation, while taking pride in the socio-economic gains that are beginning to emerge.