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Two ways of looking into the amino acid composition
in a database —one based on counting residues and
another on the number of atoms each residue contributes
to the total — give quite different results. In the former,
the composition is inversely proportional to the residue
size — the maximum deviation shown by Cys and Leu
can be explained by their chemical property or the
role in oligomeric structure, while the latter is size-
invariant. Similarly, calculations of contact preferences
between residues can be atom-based or residue-based,
and the former method provides values that are size-
independent, and thus should be preferred in model-
ling and docking studies.
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THE composition of DNA bases, like the GC content, has
important implications in DNA sequence and genome
analysis'. Some proteins, such as collagen™, can be made up
of only a few amino acids or have a skewed distribution
of residues. Local stretches of polypeptide chain can be
enriched in a residue of a particular type* or there could
be internal duplications’ giving rise to structural motifs,
such as leucine-rich repeats. The amino acid composition
of a protein has a bearing on the secondary structural content
and the fold that it acquiresG’7. Overall, however, in a
non-redundant protein database created from a primary
database — sequence® or structural’ — the residue composi-
tion does not show much variation. Here we show that the
amino acid composition in a protein database can be looked
at from two perspectives — counting residues or atoms —
the former giving values that show an approximate in-
verse relationship with the residue size, indicating the
pressure that evolution has exerted on the size of individ-
ual residues and frequencies of their incorporation into
protein molecules, while the latter does not exhibit such a
dependence. This has implications in the derivation of
different parameters on protein structures. For example,
in the calculation of expected frequencies of interactions
between residues, one needs to use the abundances of the
amino acids, which should be atom-based to take into account
the size difference between residues.

The dataset consisted of protein tertiary structures (a total
of 555 chains in 531 files) selected using PDB_SELECT'®
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(with conditions: R-factor < 20%, resolution of <20A
and sequence identity less than 25%) from the Protein
Data Bank (PDB, as on April 2002) at the Research Col-
laboratory for Structural Bioinformatics (RCSB)9. The
propensity'' of a residue X to be in the environment of ¥
(the central residue) is

20
Nyy /ZNXY
Py =—2L D
N, /Y Ny
x=1

where Nxy is the number of atoms of residue X found
close (within 4.5 /OX) to atoms of residue Y, Ny is the total
number of atoms contained in residue type X in the entire
database and summations are over all the 20 residue
types. The threshold value of distance was found suitable
in earlier studies'”. The numerator is the fractional occurrence
of atoms of residue X around residue Y and the denominator
represents the fraction of atoms belonging to residue type
X in the whole dataset. Pxy 1.0 indicates a neutral pre-
ference of X to be in the environment of Y; a value >1.0
implies preference to associate; < 1.0, to avoid.

Equation (1) involves counting of atoms. Another set
of calculations was done in which instead of considering
the constituent atoms, the counting was residue-based,
i.e. Nyy is the number of residues of type X with at least
one atom in contact with a residue of type Y.

The amino acid composition of protein structures is as-
sumed to be such as to give rise to a stable native fold,
with a rather hydrophobic core and a high proportion of
polar residues in the exterior, with functionally important
residues lining up the active site. To gain insight into the
protein folding problem, the known structures are ana-
lysed from different angles'® and for this a non-redundant
dataset is normally used'®. The percentage composition of
residues in such a database, presented in Figure 1 a, indi-
cates that there is a remarkable dependence on the size.
The largest residue, Trp has a small occurrence and the
two smallest residues Gly and Ala, the highest, the com-
position being inversely related to the accessible surface
area of the residue (X) in a model tripeptide, Gly-X-Gly'*,
representing its size. The correlation coefficient, which is
—0.53, becomes —0.76 when Cys and Leu are excluded. It
is interesting why these two residues do not follow the
pattern. Because of the susceptibility to oxidation, nature
has reasons to control the amount of Cys, usually limited
to disulphide linkages and active sites of enzymes (such as
iron—sulphur clusters). Leu, on the other hand, has a high
propensity to be in a-helix'’, can be in the core because
of its hydrophobic nature, but it also contributes the high-
est (10.4%) to the interface area of homodimeric pro-
teins'® — its ‘stickiness’ (the propensity of Leu residues to
interact with each other) being responsible for its wide-
spread use in motifs, such as leucine zippers'® —and is
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Figure 1. Plot of accessible surface area (ASA; A?) of residues (X, in a tripeptide Gly-X-Gly in an extended conformation) against amino acid
composition based on the count of (a) residues and (b) atoms in each residue. One-letter amino acid code is shown against the points and equation
of the least-squares line (excluding Cys and Leu) in (@) is y = —0.03x + 10.35.

therefore found in excess. Essentially the same relationship
is obtained if the residue volume'” or the number of constitu-
ent atoms in a residue replaces the surface area.

Compositions derived from a different dataset of PDB
files, also calculated intra-molecularly and for residues
located in inter-molecular interfacesls, match with our values
(with correlation coefficients of 0.75 and 0.84 respectively),
showing consistency between datasets. There can be some
differences in the amino acid composition depending on
the intracellular or extracellular nature of the protein'.
Nevertheless, the same trend is maintained against the
size, correlation coefficients, excluding Cys and Leu, be-
ing —0.62 and -0.79 respectively, for the two categories
of proteins. Likewise, the inverse relationship holds when
the compositions of individual mesophilic organisms®
are used; for example, E. coli giving a value of —-0.70.
However, for the two thermophilic organismszo, because
of the higher content of the charged residues and a dis-
crimination against a residue like Gln, the correlation co-
efficient is only —0.28 (not considering Cys and Leu), which
becomes —(0.48 (when Glu and Lys are also excluded) for
Aquifex aeolicus.

If the composition is based on the number of atoms
each residue contributes to the total number of protein atoms,
the result is quite different (Figure 15). The distribution
of atom-based composition is narrower (the average and
standard deviations are 5 and 1.8 respectively) than the
residue-based composition (standard deviation of 2.1),
indicating that the composition is such that each residue
contributes nearly equally to the atom pool of protein struc-
tures. That this composition is independent of the size of
the residues is indicated by a small correlation coefficient
of 0.13. Cys and Leu, which showed maximum deviation
from the overall trend in the residue-based composition,
are also the ones with the minimum and maximum values
respectively, in the atom-based composition.

As different residues are closer to each other in atom-
based composition, an organism making all the twenty
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amino acids makes a more balanced distribution of atom
sources amongst different residues.

Whether or not composition based on residue or atom
is used may have important ramification in the calculation
of residue—residue pair potentials'®*'? or the propensities
of residues to be in the environment of another residue,
for example Trp™*. Assuming the residues to have no specific
preference for each other, the likelihood of contact bet-
ween any two residues would depend on the number of
constituent atoms (i.e. the size). The composition of the
residues is taken into account to get a normalized value
for the propensity of interaction (eq. (1)). Two sets of propen-
sity values have been calculated —atom- and residue-
based — and are provided in Table 1. If one examines the
propensities of the smallest (Gly) and the largest (Trp) of
all the residues to be in the environment of all the twenty
amino acid residues, the values are rather uniformly small
(under the column ‘Gly’, Table 15) and large (under “Trp’)
respectively. This is caused by both the factors, size and
frequency of occurrence (from the residue-based compo-
sition), which are at the two extreme ends for the two
residues, reinforcing each other and thereby diminishing
any discriminatory capacity in the calculated values. To
circumvent this, the number of residue-residue contacts
needs to be normalized by residue volume/size”. The same
result should also be achieved if the calculation is atom-
based (counting the number of atoms of different residues
involved in interaction and using atom-based composition),
as this allows an implicit consideration of the size differences
between residues. Thus in Figure 2, in which the propen-
sities of residues to be in the environment of Trp are plotted,
the residue-based values show an approximate linear de-
pendence (which would improve further if Arg, Lys and
Glu are excluded), while no such dependence can be seen
for the atom-based values. Though in both the sets, the
propensities of other aromatic residues (Phe, Tyr and His)
to interact with Trp are high, indicating the preference of
aromatic residues to associate among themselves, the effect
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Figure 2. Plot of Py, propensities of residues to be in the environment
of Trp against ASA (defined in Figure 1). Filled circles represent val-
ues obtained from residue-based calculation and open circles are atom-
based. For the former the equation of the least squares line is ASA =
122.24 Py + 50.07 (with #* = 0.56).

of the residue size also gets reflected in the set of values
given in Table 1 b. Thus atom-based calculations are likely
to provide a more accurate estimate of the contact prefer-
ences — unbiased of the size — between residues.

In conclusion, conventionally defined composition of
residues, quite routinely used in the discussion of protein
structures, has an approximate inverse relationship with
the residue size. This dependence on size, rather than on
any other physico-chemical property, suggests that the
size of residues has been an important factor in determining
their level of incorporation into polypeptide chains during
evolution. The atom-based composition does not show
size dependence, and when used for calculation of interaction
propensities between residues, provides values that reflect
inherent preferences independent of size. Fold recognition
programs'® and protein—protein docking algorithms®>?’,
which rely on the contact preferences, would benefit from
such a consideration.
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