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A method for fault classification in mechanical systems
in the presence of missing data entries is introduced.
The method is based on autoassociative neural networks
where the network is trained to recall the input data
through some nonlinear neural network mapping.
From the trained network an error equation with miss-
ing inputs as design variables is constructed. Genetic
algorithm is used to solve for the missing input values.
The proposed method is tested on a fault classification
problem in a population of cylindrical shells. It is found
that the proposed method is able to estimate single-
missing-entries to the accuracy of 93% and two-
missing-entries to the accuracy of 91%. The estimated
values were then used in the classification of faults
and the fault classification accuracy of 94% was obser-
ved for single-missing-entry cases and 91% for two-
missing-entry cases while the full database set is able
to give classification accuracy of 96 %.
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NEURAL networks have been used in conjunction with vibra-
tion data with varying degrees of success to identify faults
in structures'”’. Neural networks approximate functions
of arbitrary complexity using training data. Supervised
neural networks are used to represent a mapping from an
input vector onto an output vector, while unsupervised
networks are used to classify the data without prior knowl-
edge of the classes involved. The most common neural
network architecture is the multilayer perceptron (MLP),
which is trained using the back-propagation technique®.
An alternative network is the radial basis function (RBF)S.
Both the MLP and RBF have been using for fault identi-
fication in structures but it was generally observed that
MLP performs better than RBF’. This is due to the fact
that the RBF usually requires the implementation of the
pseudo-inverse of a matrix for training, which is often
singular while MLP uses conventional optimization meth-
ods, which are stable®.
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Lopes et al.'® successfully implemented impedance
methods and neural networks for structural health moni-
toring. Marwala'' used probabilistic committee of neural
networks to classify faults in a population of nominally
identical cylindrical shells. The probabilistic neural net-
works were trained using the hybrid Monte Carlo'” and an
accuracy of 95% was observed in classifying 8 classes
fault cases. Chen er al."” successfully used neural networks
and response only data for fault diagnosis in structures.
Wu et al.' used an MLP neural network to identify damage
in a model of a three-story building. Damage was modelled
by reducing member stiffness by between 50% and 75%.
The input to the neural network was the Fourier transform
of the acceleration data, while the output was the level of
damage in each member. The network was able to diagnose
damage within 25% accuracy. Levin and Lieven'® applied
a RBF neural network and modal properties to identity
errors in the finite element model of a cantilevered beam.
The method was found to give good identification of faults
even with a limited number of experimentally measured
degrees of freedom and modes. Atalla and Inman'® suc-
cessfully trained a RBF neural network using frequency
response functions in order to identify faults in structures.
Marwala and Hunt'’ successfully applied multi-layer per-
ceptron neural networks and finite element models to
identify faults in cantilevered beam. Atalla and Inman'®
trained a RBF neural network using frequency response
functions in order to identify faults in structures. Suresh
et al."® used modular neural network approach to identify
crack location in a cantilever beam while Reddy and
Ganguli" used Radial Basis Function neural networks in
a helicopter rotor blade. Pawar and Ganguli*® used genetic
fuzzy system for damage detection in beams and helicopter
rotor blades.

When these neural networks are applied in real life
situation, one of the main problems encountered is the issue
of sensor failure. If one of the sensors fails then the neural
network is unable to make a decision because it only works
with a complete input set. What is normally done is to use
the average value of that sensor calculated over some defi-
ned period in the past and hope that the next time around
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the sensor will be available. In the literature there is no
method proposed thus far that takes account of the ab-
sence of entries of inputs to the neural networks for fault
classification in structures. It must be noted, however,
that the issue of estimating missing data has been imple-
mented in other areas in mechanical systems such as vali-
dating the gas-path sensor data’' and therefore this paper
contributes to the field of structural mechanics a procedure
that has been implemented in gas dynamics. In this paper
we propose a method of estimating missing entries in the
database that is based on autoassociative models® com-
bined with genetic algorithm for data estimation and sub-
sequently fault identification in structural mechanics. The
proposed method is tested on a classification of faults in a
population of nominally cylindrical shells.

Mathematical background
Neural networks

In this study we use neural networks to construct the auto-
associative neural networks, which are networks with in-
puts and output being the same”. There are several types
of neural network architectures and in this paper we focus
on the MLP and the MLP architecture contains a hyperbolic
tangent basis function in the hidden units and linear basis
functions in the output units®. A schematic illustration of
the MLP is shown in Figure 1. The relationship between
the output y and input x can be written as follows®.

M d
2
Yo = Y wi tanh | Y wix | (1)
=0 i=0

Output units

Hidden units

bias

Input units

Figure 1.
weights.

Feed-forward network having two layers of adaptive
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Here, wﬁ-}) and w,(;) indicate weights in the first and second
layer, respectively, going from input i to hidden unit j, M
is the number of hidden units and d is the number of out-
put units.

The model in Figure 1 is able to take into account the
intrinsic dimensionality of the data. Models of this form
can approximate any continuous function to arbitrary ac-
curacy if the number of hidden units M is sufficiently
large. Training the neural network identifies the weights
in eq. (1). A cost function must be chosen to identify the
weights in eq. (1). A cost function is a mathematical rep-
resentation of the overall objective of the problem. In this
paper, the main objective is to construct the cost function
that identifies a set of neural network weights given the
measured data. If the training set D= {x,,t, }r_, is used
and assuming that the targets y are sampled independently
given the inputs x;, and the weight parameters, wy;, the
cost function, E, may be written as follows using the
sum-of-squares of errors cost function®:

{te =Y Y 2

M=
1=

E:

=

I
=
i

where ¢ is the target data, N is the number of training ex-
amples and K is the number of outputs.

Before network training is performed, the network architec-
ture needs to be constructed by choosing the number of
hidden units, M. If M is too small, the neural network will
be insufficiently flexible and will give poor generalization
of the data because of high bias. However, if M is too
large, the neural network will be unnecessarily flexible
and will give poor generalization due to a phenomenon
known as over-fitting caused by high variance. In this
study to minimize the equation, the scaled conjugate gradient
method is used” in conjunction with back-propagation®.
The scaled conjugate gradient method is an optimization
procedure that is based on conjugate gradient method but
uses optimized mathematical expressions to reduce the
computational intensity of conjugate gradient method. It
must, however, be noted that there are no material differ-
ences in accuracy of the results between the scaled con-
jugate gradient, conjugate gradient and other gradient-
based optimization methods. The only difference between
these methods is the computational efficiency and the
scaled conjugate gradient method was chosen because of
its computational efficiency.

Autoassociative networks and missing data

Autoassociative networks are models where the network
is trained to recall the inputs'’. This means that whenever
an input is presented to the network the output is the pre-
dicted input. These networks have been used in a number
of applications including novelty detection, feature selec-
tion and data compression24’28. It must be noted, however,
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that on applying autoassociative neural networks for data
compression the network has fewer nodes in the hidden
layer. However, it must be noted that for missing data es-
timation it is absolutely crucial that the network must be
as accurate as possible and that this accuracy is not nec-
essarily realized through few hidden nodes as is the case
when these networks are used for data compression. It is
therefore crucial that some process of identifying the optimal
architecture must be used. Using eq. (1) autoassociative
memory networks may be formulated by setting input x to
be equal to output y. Equation (1) may thus be re-written
in simplified form as:

{y}=r{wh{x}). 3)

Here {y} is the output vector, {x} is the input vector, fis
a function and {w} is the mapping weight vector. Given the
fact that {x} = {y}, eq. (3) may thus be re-written as fol-
lows:

{x} = fdwhixp . 4

For a perfectly mapped system, eq. (4) holds, however,
for a realistic mapping there will be some error, and thus
eq. (4) may be re-written as:

ley={x}=fwh{x}). &)

The sum of squares of both the left hand side and the
right hand side of eq. (5) will give:

E=Y ((x)= f(wh (), (6)
i=l

where ¢ is the size of the input vector. For a situation
when not all the inputs are known, then the input data
may be divided into known x, and unknown components
x, and thus eq. (6) may be written as follows:

cflibefl] o

From eq. (7), the unknown component x, data is estima-
ted from the known component x, by minimizing the error
in eq. (7). It is absolutely important that a global minimum
error be achieved because a local minimum error results
with the incorrect estimation of the unknown component
x,. In this study a global optimum method, genetic algo-
rithm, is used to find the global optimum solution®’. The
next section thus explains the genetic algorithm.

Genetic algorithms

Genetic algorithm (GA) was inspired by Darwin’s theory
of natural evolution®°. Genetic algorithm is a simulation
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of natural evolution where the law of the survival of the
fittest is applied to a population of individuals. This natural
optimization method is used for optimization, and in this
paper, to minimize the error in eq. (7), genetic algorithm
is implemented by generating a population and creating a
new population by performing the following procedures:
(1) crossover; (2) mutation; and (3) reproduction”. The
crossover operator mixes genetic information in the popu-
lation by cutting pairs of chromosomes at random points
along their length and exchanging over the cut sections.
This has a potential of joining successful operators together.
Arithmetic crossover technique®’ is used in this paper.
Arithmetic crossover is implemented by taking parents pl
and p2 and a random number a sampled uniformly between 0
and 1, and create children cl and c2 to be cl =pl.a+
p2.(l-a) and c2=pl(l—a)+ p2.a, respectively. The
mutation operator picks the chromosomes at random and
inverts it. This has a potential of introducing to the popu-
lation new information. In this paper, non-uniform muta-
tion” is used. Non-uniform mutation changes one of the
parameters of the parent based on a non-uniform probability
distribution. It is implemented by picking a variable or
‘gene’ of the chromosomes at random and increasing or
decreasing it towards its upper or lower bound, respecti-
vely. This has a potential of introducing new information
to the population. It changes one of the parameters of the
parent based on a non-uniform probability distribution. A
Gaussian distribution is used and starts with a higher
variance, and narrows to a point distribution as the current
generation approaches the maximum generation. Repro-
duction takes successful chromosomes and reproduces
them in accordance to their fitness functions. In this paper
normalized geometric selection method is used®’. Nor-
malized geometric selection method is a ranking selection
function based on the normalized geometric distribution
and it limits the probability of selecting the fittest indivi-
dual especially at the early stages of the run process.
With this method, the probability of selecting the ith in-
dividual in a population of size L is:

Nl
p-40-9) | 8)
1-(1-q)

Here g is the probability of selecting the best individual
and r is the rank of the individual where 1 is the best. In
Goldberg’s study of genetic algorithms in function optimi-
zation, a series of parametric studies across a five-function
suite of problems suggested that good genetic algorithm
performance requires the choice of a high crossover rate,
a low mutation rate (inversely proportional to the popula-
tion size), and a moderate population size

Missing entry methodology

As described earlier, the missing entry methodology here
combines the autoassociative neural networks and opti-

CURRENT SCIENCE, VOL. 90, NO. 4, 25 FEBRUARY 2006



RESEARCH ARTICLES

mization method, viz. the genetic algorithm. The propo-
sed method is shown in Figure 2. It is implemented by
determining the number of missing entries and calling it
N. Then the missing entry objective function with N vari-
ables is constructed using eq. (7). Genetic algorithm is
then used to minimize the missing entry objective function
and optimum solution is the estimated values of the miss-
ing variables. The missing entry objective function in eq.
(7) can also be solved using gradient-based approach
since the gradient of the error function can easily be cal-
culated using back-propagation®. However, the gradient-
based methods are not global methods and therefore are
not used in this study. They can, however, be used to fine-
tune the solution given by the genetic algorithm. However,
preliminary investigation in this study indicated that fine-
tuning the genetic algorithm solution does not offer any
advantages with regards to the estimation of the missing
entries nor the accuracy of fault classification.

Dynamics

In this study, modal properties, i.e. natural frequencies
and mode shapes are used for fault classification. For this
reason these parameters are described in this section. Modal
properties are related to the physical properties of the
structure. All elastic structures may be described in terms

Let the number of
missing entries be N

Construct the error
equation with N
unknown variables

Set genetic
algorithms
parameters such as
population size
depending on N

Has the solution
converged?

The optimum variables
are the missing entries

Figure 2. A schematic diagram indicating the implementation of the
missing data estimator.
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of their distributed mass, damping and stiffness matrices
in the time domain through the following expression”':

[MUXP+ICHX Y+ KX} ={F}, ©)

where [M], [C] and [K] are the mass, damping and stiffness
matrices respectively, and {X}, {X'} and {X”} are the
displacement, velocity and acceleration vectors, respecti-
vely, while {F} is the applied force vector. If eq. (9) is
transformed into the modal domain to form an eigenvalue
equation for the ith mode, then’!:
(-7 M1+ ja [C1+ KD} = {0}, (10)
where j = J—_l ®; is the ith complex eigenvalue, with its
imaginary part corresponding to the natural frequency w;,
{0} is the null vector, and {q)_}i is the ith complex mode
shape vector with the real part corresponding to the normal-
ized mode shape {¢};. From eq. (10) it may be deduced
that the changes in the mass and stiffness matrices cause
changes in the modal properties of the structure. There-

fore, the modal properties can be identified through the
identification of the correct mass and stiffness matrices.

Example: cylindrical structure

In this section the procedure proposed is experimentally
validated. The experiment is performed on a population
of cylinders, which are supported by inserting a sponge
rested on a bubble-wrap, to simulate a ‘free-free’ envi-
ronment (see Figure 3) and the details of this may be
found in ref. 9. The sponge is inserted inside the cylinders
to control boundary conditions. This will be further dis-
cussed below. Conventionally, a ‘free—free’ environment
is achieved by suspending a structure usually with light
elastic bands. A ‘free—free’ environment is implemented
so that rigid body modes, which do not exhibit bending or
flexing, can be identified. These modes occur at frequency
of 0 Hz and they can be used to calculate the mass and
inertia properties. In the present study, we are not inter-
ested in the rigid body modes. Here, a ‘free—free’ envi-
ronment is approximated using a bubble-wrap. Testing
the cylinders suspended is approximately the same as testing
it while resting on a bubble-wrap, because the frequency
of cylinder-on-wrap is below 100 Hz. The first natural
frequency of cylinders being analysed is over 300 Hz and
this value is several orders of magnitudes above the natural
frequency of a cylinder on a bubble-wrap. Therefore the
cylinder on the wrap is effectively decoupled from the
ground. It should be noted that the bubble-wrap adds
some damping to the structure but the damping added is
found to be small enough for the modes to be easily iden-
tified. When the damping ratios were estimated, it was ob-
served that the structure was lightly damped and therefore
damping did not play significant role in this paper. The
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Figure 3.
fault position and supporting sponge.

Table 1. Number of different types of fault-cases generated

Fault [000][100] [010] [001][110][101][011][111]
Number 60 24 24 24 24 24 24 60

impulse hammer test is performed on each of the 20 steel
seam-welded cylindrical shells (1.75 £ 0.02 mm thickness,
101.86 £0.29 mm diameter and of height 101.50 £+ 0.20 mm).
The impulse is applied at 19 different locations as indica-
ted in Figures 3-9 on the upper half of the cylinder and
10 on the lower half of the cylinder. The sponge is inserted
inside the cylinder to control boundary conditions and by
rotating it every time a measurement is taken. The bubble
wrap simulates the free—free environment. The top impulse
positions are located 25 mm from the top edge and the
bottom impulse positions are located 25 mm from the bot-
tom edge of the cylinder. The angle between two adjacent
impulse positions is 36°.

Problems encountered during impulse testing include
difficulty of exciting the structure at an exact position espe-
cially for an ensemble of structures and in a repeatable direc-
tion. Each cylinder is divided into three equal substructures
and holes of 10-15 mm in diameter are introduced at the
centers of the substructures to simulate faults. For one
cylinder the first type of fault is a zero-fault scenario.
This type of fault is given the identity [0 0 0], indicating
that there are no faults in any of the three substructures.
The second type of fault is a one-fault scenario, where a
hole may be located in any of the three substructures.
Three possible one-fault scenarios are [1 0 0], [0 1 0], and
[0 O 1] indicating one hole in substructures 1, 2 or 3 res-
pectively. The third type of fault is a two-fault scenario,
where a hole is located in two of the three substructures.
Three possible two-fault scenarios are [1 1 0], [1 0 1], and
[0 1 1]. The final type of fault is a three-fault scenario,
where a hole is located in all three substructures, and the
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Illustration of a cylindrical shell showing the positions of the impulse, accelerometer, substructures,

identity of this faultis [1 1 1]. There are 8§ different types
of fault-cases considered (including [0 0 0]).

Because the zero-fault scenarios and the three-fault
scenarios are over-represented, twelve cylinders are picked
at random and additional one- and two-fault cases are mea-
sured after increasing the magnitude of the holes. This is
done before the next fault case is introduced to the cylinders.
The reason why zero-fault and three-fault scenarios are
over-represented is because all cylinders tested give these
fault-cases, whereas not all cylinders tested give all 3 one-
fault and 3 two-fault cases. Only a few fault-cases are sele-
cted because of the limited computational storage space
available. For each fault-case, acceleration and impulse
measurements are taken. The types of faults that are intro-
duced (i.e. drilled holes) do not influence damping.

Each cylinder is measured three times under different
directions by changing the orientation of a rectangular
sponge inserted inside the cylinder. The number of sets of
measurements taken for undamaged population is 60 (20
cylinders x 3 for different directions). All the possible fault
types and their respective number of occurrences are
listed in Table 1. In Table 1 it should be noted that the
numbers of one- and two-fault cases are each 72. This is
because as mentioned above, increasing the sizes of holes
in the substructures and taking vibration measurements
generated additional one- and two-fault cases.

The impulse and response data are processed using the
Fast Fourier Transform to convert the time domain impulse
history and response data into the frequency domain. The
data in the frequency domain are used to calculate the
FRFs. The sample FRF results from an ensemble of 20
undamaged cylinders are shown in Figure 4. This figure
indicates that the measurements are generally repeatable
at low frequencies and are not repeatable at high frequen-
cies. Axisymmetric structures such as cylinders have re-
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peated modes due to their symmetry””. In this paper, the
presence of an accelerometer and the imperfection of cyl-
inders destroy the axisymmetry of the structures. There-
fore the problem of repeated natural frequencies is neatly
avoided, thereby making the process of modal analysis
easier to perform™. The problem of uncertainty of high
frequencies is avoided by only using frequencies under
4000 Hz.

Testing the proposed procedure

From the data measured in the previous section, 10 para-
meters were selected. The autoassociative network with
10 inputs and 10 outputs was constructed and several

inertance (mesiean

10 000 200 X0 50 w00 40 S0
Fregency (M)

0 20 1000

Figure 4. Measured frequency response functions from a population
of cylinders.
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Figure 5. Measured and estimated missing value.
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numbers of hidden units were used as shown in Figure 5.
As shown on this figure, it was found that 10 hidden units
was the optimal network that gives the best prediction of
the input data. It must be noted, however, that it is generally
assumed that the best autoassociative network is the one
that has the lowest possible number of hidden units®. How-
ever, in this study, i.e. the case of missing data estimation,
this factor must not be taken for granted and it is recom-
mended that a separate study, like the one conducted here,
should be used to determine the optimal autoassociative
network. This is because for missing data estimation it
was found that the success of the procedure is determined
by how accurate the networks are and the accuracy does
not necessarily only occur when the size of hidden nodes
is small. As indicated before, the autoassociative network
was trained using scaled conjugate method™.

The first experiment consisted of cases where one of
the inputs to the neural network was assumed to be unknown
and then estimated using genetic algorithm method. On
implementing genetic algorithm, the arithmetic cross-over,
non-uniform mutation and normalized geometric selection
as described before were used. On implementing arithmetic
cross-over several parameters needed to be chosen and
these were bounds and the probability of cross-over. The
bounds were determined from the maximums and mini-
mums of historical values of the particular data point
while the probability of cross-over was chosen to be 0.75
as suggested in ref. 29. On implementing mutation the pa-
rameters that needed to be chosen were the bounds, and
these were chosen as was done for cross-over, and the
probability of mutation, that was chosen to be 0.0333 as
recommended by Goldberg™. Genetic algorithm had a
population of 20 and was run for 25 generations.

The proposed method for the case of one missing data
per input set, estimated the missing value to the accuracy
of 93%. When the proposed method was tested for the
case with two missing data per input set, the accuracy of the
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Figure 6. Prediction error versus the number of hidden nodes.
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estimated values is 91%. The estimated values together
with the accurate values are also indicated in Figure 6.
This figure illustrates that the proposed missing data es-
timator gives the results that are consistent and accurate.
In fact the data in this figure shows the correlation be-
tween the estimated data and the correct data to be 0.9.

In many cases the estimated values are intended for a
particular reason, and in this paper they are intended to
fulfil the goal of fault classification in a population of
cylinders. The estimated values were, therefore, used for
the classification of faults in a population of cylindrical shells
and the fault classification accuracy of 94% was observed
for a one-missing-entry case and 91% for the two-missing-
entry case. When the complete database was used the
fault classification accuracy of 96% was achieved.

The sources of errors in the experiment are measurement
errors, modal analysis and neural network training. To
minimize these errors reliable instruments were used for
measuring data, reliable software were used for signal
processing and modal analysis and standard procedures
were used for training, generalization and testing of neural
networks. The impact of these errors on the quality of re-
sults, was to a degree that it did not compromise the quality
of the results.

Conclusion

In this study, a method based on autoassociative neural
networks and genetic algorithms is proposed to estimate
missing entries in data. This procedure was tested on a
population of cylindrical shells. The proposed method is
able to estimate single-missing-entries to the accuracy of
93% and two-missing-entries to the accuracy of 91%. Fur-
thermore, fault classification accuracy of 94% was obser-
ved for single-missing-entry cases and 91% for two-miss-
ing-entry cases while the full database set is able to give
classification accuracy of 96%.
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