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Artificial Neural Network (ANN) and regression models
were developed using watershed-scale geomorphologic
parameters to predict surface runoff and sediment
losses of the St. Esprit watershed, Quebec, Canada. Geo-
morphological parameters describing the land surface
drainage characteristics and surface water flow behav-
iour were empirically associated with measured rainfall
and runoff data and used as input to a three-layered
back-propagation feed-forward neural network model.
Morphological parameters such as bifurcation ratio,
area ratio, channel length ratio, drainage factor and
relief ratio were selected using the Multivariate Adaptive
Regression Splines tool, based on their relative impor-
tance in prediction of runoff and sediment yield. Re-
gression models were developed using the curve-fitting
toolbox of MATLAB software and compared with the
results obtained from ANN models. The coefficient of
determination (R*) and model efficiency factor (E) were

estimated to ascertain the model performance. Geo-
morphology-based ANN model validation statistics re-
sulted in R* values ranging from 0.85 to 0.95 and E values
from 0.74 to 0.82 for peak runoff rate and R> values
from 0.78 to 0.93 and E values from 0.71 to 0.76 for
sediment loss. Using geomorphology-based regression
models, R* values for the same dataset varied from
0.78 to 0.88 (0.74 > E > 0.69) for peak runoff rate predic-
tion and 0.39 to 0.54 (0.53>E > 0.46) for sediment
prediction. When morphological parameters were not
associated with rainfall depth and peak runoff rate,
prediction error statistical parameter values (R*> and E)
were less for both neural network and regression
models. Thus, associating selected geomorphological
parameters with rainfall depth and peak runoff rate
enhances the accuracy of runoff rate and sediment loss
predictions from the watershed. Furthermore, ANN
models performed better than the regression equations.

Keywords: Artificial Neural Network, geomorphology,
regression splines, runoff, sediment yield.

KNOWLEDGE of landscape morphology along with the
hydrologic processes is required to conceptualize the
generation of runoff and sediment loss from precipitation
events. In the past few decades, great strides have been
made in conceptualizing the process of runoff generation
and sediment yield from watersheds through modelling
approaches. Models are classified based on their degree
of representation of the physical processes involved in
abstraction of the real world phenomenon. With the increas-
ing degree of representation, models are classified as
black-box models, conceptual models and physically based
distributed models. The physically based distributed
model can be considered a better choice in a rigorous theo-
retical sense. However, the significant data requirements
of such models, coupled with the time involved in model
development, calibration and validation compared to
other model categories, make them an unfavourable choice
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in operational hydrology'. Lumped conceptual models are
favoured in terms of their limited data requirements and
inclusion of a conceptual framework, but require a lengthy
calibration and parameterization process. In this context,
use of soft computing and data mining tools offers an alterna-
tive to the distributed and physics-based modelling appro-
aches. The Artificial Neural Network (ANN), a soft com-
puting tool, belongs to black-box modelling category and
has its own limitations®. The main advantage of the ANN
approach over traditional methods is that it does not re-
quire the complex nature of the underlying process under
consideration to be explicitly described in a mathematical
form’. Other advantages of ANN over conventional models
are discussed in detail by French ez al.®. In recent years,
ANN models have attracted researchers in many scientific
and engineering disciplines, since they are capable of cor-
relating large and complex multi-parameter datasets with-
out any prior knowledge of the relationships between the
parameters. However, several studies’® have argued for
more cautious approaches that include considerations of
relevant physics and statistical principles in an effort to
make ANN more useful as a practical as well as research
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tool. Therefore, determination of appropriate model inputs,
development of a suitable network architecture, and pa-
rameter estimation have been identified as aspects that
need further attention’. The objective of this study is to
relate judiciously selected dimensionless geomorphological
parameters reflecting watershed hydrology with rainfall
depth and duration to predict runoff and again relate the
parameters with runoff rates to predict sediment loss, using
ANN and regression models.

Background information

The ANN technique was formulated based on the cognitive
response of the human brain. ANNs were first developed
in the 1940s, and in recent decades, considerable interest
has been raised over their applications in hydrological
modelling, as the current algorithms overcome the limita-
tions of previous network algorithms'®. The increasing
use of ANN in estimating and predicting water resources
variables has been documented in recent studies™®''.
Among the plethora of applications of ANN, the systems
approach, in general, may be categorized into a pattern-mapp-
ing problem, i.e. input-output mapping as in the case of
black-box modelling. For this purpose, one of the best
suitable architectures is a feed-forward network'”. It was
also established by Hornik et al."’ that a feed-forward
network could be considered as a general nonlinear approxi-
mator. This property of generality prompted researchers
to use ANN models for predicting the complex hydrologic
responses such as estimation of runoff and sediment loss
from watersheds.

Smith and Eli'* trained a three-layer Back Propagation
(BP) ANN model to predict runoff from stochastically
generated rainfall patterns obtained by analysis of weather ra-
dar data of Advanced Very High Resolution Radiometer
(AVHRR) and cloud cover images. They revealed that
the ANN model predicted peak runoff rate and times to
peak values of a small synthetic watershed (0.1 ha) for 76
rainfall events were in line with the observed values
(Root Mean Square Error (RMSE) ranging from 0.1 to 0.3).
However, this study raised a couple of questions related
to the suitability of ANN approaches in explaining the
physics of the rainfall-runoff process and accounting for
the watershed drainage patterns. In this study, one of the
apprehensions on the suitability of ANN to recognize the
differences in watershed drainage network and predict run-
off and sediment losses more accurately, is addressed by
including Horton’s geomorphological parameters.

Tokar and Johnson'® used a three-layer BP ANN to
forecast daily runoff as a function of daily precipitation,
temperature and snowmelt for the Little Patuxent River
watershed in Maryland. The ANN model proved to be a
promising alternative to the existing statistical regression
and simple conceptual rainfall-runoff-based models. ANN
models often represent an improvement upon the predic-
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tion accuracy and flexibility of current methods. Anmala
et al."” developed a three-layer feed-forward ANN with a
BP learning algorithm with five input nodes, monthly
precipitation from four different stations and mean
monthly temperature of a Kansas watershed. The monthly
mean runoff was chosen as output. It was reported that
the feed-forward ANN, without time-delayed input, did
not provide a significant improvement over other regres-
sion techniques. However, inclusion of recurrent ANNs
resulted in better performance. Cannon and Whitfield'®
concluded ANNSs to be superior to stepwise linear regres-
sion procedures while conducting a study on predicting
runoff from five-day mean stream flow data collected
from 21 watersheds of British Columbia, Canada. Sarangi
and Bhattacharya'’ developed an empirical model using
regression techniques to predict sediment concentration
from runoff rate associated with geomorphological parame-
ters. The relationship between runoff rate and dimensionless
geomorphological parameters was obtained by trial and
error techniques. The developed model performed better
(R*=0.92 and E =0.87) when validated for watersheds
of Damoder Valley Corporation, India. Nagy et al.'® used
a feed-forward three-layer BP ANN model to predict the
sediment concentration in rivers using eight input parameters,
reflecting sediment and river-bed information. The ANN
approach provided better results than other formulae used
for estimation of sediment concentration. Sudheer ez al.’
developed a new approach for designing the network
structure in an ANN-based rainfall-runoff model. Their
method used statistical properties such as an autocorrela-
tion function and a partial autocorrelation function of the
data series, in identifying a unique input vector that best
represented the process for the basin, and a standard algo-
rithm for training. The methodology was validated using
data from a river basin in India. The results of the study
were highly promising.

Yitian and Gu" developed a mass-conservation transfer
function for flow and sediment yield in rivers and incor-
porated the models into an ANN architecture, based on an
actual river network architecture. They also expanded hy-
drological applications of the ANN modelling technique to
sediment yield predictions. The ANN river system model
was applied to model daily discharges and annual sedi-
ment discharges in the Jingjiang reach of the Yangtze
River and Dongting Lake, China. An assessment of model
accuracy demonstrated that the ANN technique is a
powerful tool for real-time prediction of flow and sedi-
ment transport in a complex network of rivers. Zhang and
Govindaraju'' developed a Geomorphology-based ANN
(GANN) for prediction of runoff over watersheds. Water-
shed morphological parameters such as bifurcation ratio,
area ratio, channel length and slope ratio, required for the
development of a Geomorphologic Instantaneous Unit
Hydrograph (GIUH), were used for development of flow
path probabilities. The path probabilities were used as
connection weights between the hidden and output layers. In
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the three-layered ANN architecture, the input layer con-
sisted of the rainfall excesses from the current time-step
and previous time-steps. The number of previous time-
steps, included as inputs, was obtained by trial and error.
The number of hidden layers was equal to the number of
paths that the flow could take in a fourth-order channel
network. It was concluded that GANN offered a promising
step towards elevating ANN from purely empirical models
to those based on geomorphology. With the added flexi-
bility provided through the connection weights between
input and hidden-layer nodes, they were shown to perform
better than the GIUH model.

A few ANN models for the prediction of runoff and
sediment loads consider the geomorphological parameters
as inputs or as network weights to predict the runoff and
sediment loss over watersheds. However, it was revealed
from the review of ANN-based hydrological models that
no research investigation has mathematically associated the
geomorphological parameters with rainfall or runoff and
used these as input to the neural network model to predict
the runoff and sediment yield on a watershed scale.

Study watershed and data

The St. Esprit watershed (26.1 km?) is located in the province
of Quebec, Canada, approximately 50 km north of Montreal
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Figure 1. Location map of St. Esprit watershed.
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(Figure 1). It is located in the St. Esprit river basin (210 kmz),
which is a tributary of the L’Assomption watershed
(4220 km?). The watershed is located between 45°55°00”
and 46°0000”N lat, and 73°41732” and 73°36’00”"W long.
The maximum difference in elevation from the outlet to
the highest point of the watershed is about 50 m. The
principal watercourse of the delineated St. Esprit water-
shed (Figure 2) is 9 km long and there are a total of
60.3 km of watercourses within the watershed®. The climate
of the watershed is temperate. The frost-free growing
season varies from 122 to 138 days with a mean annual
precipitation of 998 mm, of which roughly 20% occurs as
snow. The mean annual temperature is 5.2°C and the
daily mean temperature in the month of July, which is the
peak summer month in Quebec, varies between 18 and
21°C. Soils formed from glacial tills (sandy loams and
loams) are located in the upland areas that occupy ap-
proximately 37% of the watershed. Soils formed from
marine sediments (clay, clay loam) occupy 38% of the
watershed, and the balance of the soils (sand to loamy
clay) is formed mostly from alluvial deposits. About 64%
of the watershed is planted with corn, cereal, soybean,
vegetable, hay and pasture. The rainfall, soil temperature,
runoff and sediment concentration values for selected
events during the snow-less periods (April to September)
for four years (1994-97) were extracted from the telemetric
sensor data of the watershed gauging station. These periods
were so chosen to ensure proper flow of water over the
land surface, without the effect of snowfall and subse-
quent freezing and thawing on land surfaces. The freezing
of water on land surfaces during snowfall restricts the
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Figure 2. Stream order network of St. Esprit watershed generated us-
ing an interface with ArcGIS tool.
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Table 1.

Geomorphological parameters estimated using WMET interface for St. Esprit watershed, Quebec, Canada

Geomorphological parameter

St. Esprit watershed

Area (km?) 26.093
Perimeter (km) 23.679
Maximum length (km) 7.35
Maximum elevation (m) 105
Minimum elevation (m) 65
Watershed relief (km) 0.04
Relief ratio 0.006
Relative relief 0.002
Elongation ratio 0.823
Mean slope (km/km) 0.012
Stream characteristics (Strahler’s stream Number of
ordering system)® streams
1st order streams 40
2nd order streams 17
3rd order streams 3
4th order streams 1
Horton’s parameters
Total length of streams of all orders (km) 51.5
Stream frequency of the watershed (km™) 2.338
Drainage factor of the watershed 0.60
Shape factor 1.878
Form factor 0.533
Circulatory ratio 0.765
Drainage density (km™') 1.974
Ruggedness number 0.079
Hypsometric integral (Hy;) 0.52

Length Area Mean length Mean area
(km) (km?) (km) (km?)
15.76 10.08 0.39 0.252
25.89 17.6 1.523 1.035
7.185 17.83 2.39 5.943
2.663 25.21 2.663 25.21

R, =1.856 Rg =3.597 Ry=4.742

flow and the effect of geomorphology is not properly re-
flected in hydrologic response of watersheds. From the
recorded dataset of the St. Esprit watershed, 64 rainfall
events were selected for analysis and the corresponding
Direct Runoff Hydrographs (DRHs) were derived from
the total storm hydrograph using the straight-line base-
flow separation technique®'. Further, the peak and mean
runoff rates for all the selected events were estimated
from the generated DRHs. The collected sediment samples
were analysed in the laboratory to estimate the sediment
concentrations in the runoff and the average sediment
yield rate of individual events was calculated.

Estimation of geomorphological parameters

The ArcGIS® tool of ESRI was used to generate geomor-
phological parameters by developing an interface, WMET
(Watershed Morphology Estimation Tool) within the
ArcGIS® environment using Visual Basic for Applica-
tions programming language®’. The stream network of the
St. Esprit watershed is shown in Figure 2 and estimated
morphological parameters are displayed in Table 1. The
stream order and network is based on Strahler’s ordering
schem623, according to which Horton’s bifurcation law of
stream numbers can be expressed quantitatively as>*

Ni/Nip1 = Rg, (D
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where N; and N, are the number of streams in order i and
i+ 1 respectively, i=1,2,... Q and Q is the highest stream
order of the watershed, and Ry is the bifurcation ratio.

L,/L =Ry, 2)

where R; is the stream length ratio, and the average
length of channel of order i is given by

L=—Y1L,,. 3)

For the drainage area,
Al A =Ry, 4)

where R, is the area ratio and average area of order i is
given by

1
N;

iJ

MZ

7= (5)

where A;; is the total area that drains into the jth stream
of order i.

These empirical laws state that the bifurcation ratio,
length ratio and area ratio are unique representative parame-
ters for a given watershed and are fixed values for a given
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watershed system. These parameters are estimated by
graphically plotting stream order against the number of
streams, stream length and contributing stream area in a
semi-logarithmic graph and calculating the anti-log of the
slopes of the best fit lines to obtain Ry, Ry and R, (Figure
3). The estimated parameters (Rg = 3.597, Ry = 1.856 and
R, =4.742) of the St. Esprit watershed were within the
ranges (i.e. 3 <Rg <5, 1.5 <Ry <3.5 and 3 < R, < 6) gener-
ally found for natural watersheds”>*°.

Modelling tools and methodology

ANN

ANNSs, which emulate the parallel distributed processing of
the human nervous system, have proven to be successful
in dealing with complicated problems such as function ap-
proximation and pattern recognition. The stored information-
processing elements are interconnected and organized in
layers. The connection strengths, also called network weights,
can be adapted such that the output of the network
matches a desired response. In hydrology, prediction of
runoff and sediment loss from watershed systems has
been a difficult subject due to complexity of the physical
processes involved and variability of rainfall in space and
time. The most commonly used ANN for hydrological
modelling is a feed-forward network with the BP training
algorithm'!, which is also capable of nonlinear pattern
recognition and memory association. Standard multi-layer
feed-forward networks are capable of approximating any
measurable function to any desirable degree of accuracy.
In that sense, the multi-layer feed-forward architecture
gives neural networks the potential of being universal ap-
proximators rather than the specific choice of an activation
function. In general, application of ANN in modelling,
design or problem-solving is preferred in situations where
the system response parameters of a real-world phenomenon
are either poorly defined or misunderstood, and where
observations of the process may be difficult or impossible
to perform, and also when it is difficult to recognize the
complex relationships between aspects of the process under
investigation®’.

Neural network architecture: According to Sudheer et
al’, one of the most critical questions when applying
ANN to modelling of the rainfall-runoff process, is what
architecture should be used to map the processes effectively.
The input vectors to the selected ANN model, the number
of hidden layers, the learning rule and the number of output
vectors greatly influence the performance of the model.
Moreover, there are no fixed rules for developing an
ANN, even though a general framework can be followed
based on previous successful applications in engineering’.
Using available data of the study watershed, trial and error
approach was employed in the present analysis to select
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the optimal neural network architecture'”. Different com-
binations of input parameters and number of hidden layers
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Figure 3. Estimation of Rg, R and R values of St. Esprit watershed.
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Figure 4. Neural network architecture used for runoff and sediment loss prediction.

corresponding to a single output were tried to select the
ANN model architecture. The RMSE, which indicates the
performance of an ANN model, was considered as the
criterion for selection of optimal architecture. While the
inclusion of two hidden layers increased the model run-
ning time significantly, it had little effect on RMSE. The
number of input parameters in the ANN was determined
using the Multvariate Adaptive Regression Spline (MARS)?®,
in which the relative importance of each variable was ob-
tained. MARS estimates the relative importance of a vari-
able by comparing the effect of an individual variable on
the goodness-of-fit of the regression model and lists vari-
ables in the order of their sensitivity with respect to model
accuracy.

Therefore, a three-layer feed-forward neural network with
BP learning algorithm was selected for rainfall-runoff
and runoff-sediment yield modelling (Figure 4).

Each neuron has a number of input arcs u; (i=1 to n)
connected (Figure 4), and associated with each i, there is
a weight W;; which represents a factor by which a value
passing to the neuron is multiplied. A neuron sums the
values of all inputs.

i3

S; :ZWUui +b. 6)
i=l

In Figure 4, Wu corresponds to the summation term used

in eq. (6). The term b is called a bias. Finally, an activation
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function is applied to the value S; to provide a final out-
put O from the neuron. When a BP training algorithm is
used for training a network, the sigmoid activation function
is most often used”. The sigmoid function is bounded
above and below (0 and 1), continuous and differentiable
everywhere’®. The sigmoid function (@) is given by

1
) @)
l+e’

(P(Sj) =
Network hidden-layer nodes: The number of nodes in the
hidden layer plays a significant role in ANN model per-
formance. Figure 5 shows the RMSE for datasets simu-
lated by ANN with varying number of nodes in the hidden
layer. It was observed that the RMSE was minimum for 16
nodes in the ANN model of rainfall and runoff, whereas
for runoff and sediment yield ANN model, RMSE was
minimum for eight nodes. Also, with further increase in
the number of hidden nodes for runoff-sediment ANN
model, there was marginal increase in RMSE. However,
for eight nodes in the hidden layer, both the ANN models
performed optimally with respect to processing time and
RMSE estimates. Zhang and Govindaraju'' used the number
of flow paths as the number of nodes in the hidden layer
of a GANN. The maximum number of possible flow
paths in a watershed drainage network is given by 2%,
where Q is the highest stream order of the watershed.
Each flow path is made up of an overland plane and one
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Figure 5.

or more channels. The flow path and path probabilities
are responsible for translating runoff water over the watershed
towards the outlet'’. In the present study, the St. Esprit
watershed was a fourth order watershed, so the possible
flow paths are 28D = 93 8, which conforms to the low
RMSE values for eight nodes, as shown in Figure 5.
Hence, it is evident that the geomorphological features of
the watershed govern the neural network architecture for
runoff and sediment yield modelling.

Data preparation and standardization: In the present study,
50% of the data (32 sets) was used for training, 25% (16
sets) for testing and the remaining 25% (16 sets) was
used for validation of the ANN models. For ANN model
development, the Neural Works Professional 11+, version
5.23 was used. For development of regression models,
75% of the data was used for model calibration and 25%
for model validation. The MARS software (version 2.0)
was used for carrying out sensitivity analysis and priori-
tizing the parameters which are more sensitive to genera-
tion of runoff and sediment yield. The regression models
were developed using the curve-fit toolbox of MATLAB
6.5 tool. The dimensionless geomorphological parameters
(Table 1) were mathematically associated with the event-
based rainfall depth values. A trial and error technique
was employed to find the best association in terms of R’
value of the regression equation generated by association
of the input and output parameters. Logarithmic, exponential
and trigonometric transformations, as well as different
roots of the geomorphological parameters were tried and
associated with the rainfall depth in peak runoff rate pre-
diction and associated with mean runoff rate in sediment
prediction. The selected composite parameters were then
used as independent variables (X,,) for developing a rela-
tionship between dependent variables (Y,), i.e. between peak
runoff rate and sediment concentration.

Yy =f(Xn), (8)
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where

Xn=X1f(GP2) + X5 f(GPy) + X3/ (GP) + ... + X f (GP ).
©)

GP, to GP,, are different geomorphological parameters
and f(GP,) through f(GP,,) are the logarithmic, exponen-
tial and root transformations associated as mathematical
relationships (e.g. power, multiplication and division) with
variables X, to X,, respectively.

Due to the nature of the sigmoid function, it is necessary
to standardize the data, i.e. to convert it to a range 0 and
1. Without this, for the large values of input variables obtai-
ned through eq. (9), the ANN would require extremely
small weighting factors and this could cause computa-
tional inaccuracies due to floating point calculations and
sluggish training, and the gradient of sigmoid function at
extreme values would be approximately zero™. Therefore, in
the present study, the input values were standardized with
respect to the range of the dataset (eq. (10)), for better model
predictions compared to other approaches of standardiza-

s 2
tion 9.

R; —Min,
N=—"——, 10
" Max; —Min; (10)

where R; is the real value applied to node i, N; is the res-
pective standardized value for the node, Max; and Min;
are respectively, the maximum and minimum of all values
applied to the node. The ANN model-predicted output
values were destandardized to generate the predicted values
of runoff rate and sediment yield for comparison with the
observed values.

The datasets were randomized using the Excel™ spread-
sheet data-sorting capability to nullify the presence of any
existing trend and inherent properties within the data. The
presence of specific trends within the data may provide
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improper training and testing during the ANN model de-
velopment™”’. Therefore, in this study, twenty such shuffled
sets were prepared for input to the ANN architecture, and
the RMSE of model training and R* of the observed and
model predicted values were noted. The best ANN model
was developed using one of the shuffled datasets having
minimum RMSE and R’ close to one.

Training neural networks: The neural network learns by
adjusting the biases and weights linking the neurons. Be-
fore training, the initial network biases and weights were
assigned small random values®. The learning process is
similar to the calibration of conceptual models. ANNs are
trained with a set of known input and output data. The
training process was time-consuming, repeated with a
number of different sets of shuffled data. RMSE was noted
for each analysis and cross validation was also performed
to estimate R* values. The learning process is terminated
when an optimum prediction statistics is obtained in rela-
tion to epoch size and cross-validation results. Epoch is
the number of sets of training data presented to the learning
cycles between weight updates. It is recommended that
the number of epochs should be less than the number of
input datasets fed to the ANN model for training and testing.
In the present study, the Normalized Cumulative Delta
Rule (NCDR) was implemented with the sigmoid transfer
function. NCDR was independent of the epoch size due to
its normalized function; however, in an attempt to substantiate
this concept, epochs ranging from 16 to 30 were implemen-
ted. Changes in epoch size had no significant effect on
ANN performance using validation datasets. Once the training
process was satisfactorily completed, the network was
saved, the test and validation datasets recalled, and values
predicted by the model were compared with the observed
values for the particular events. If the prediction error sta-
tistics for these datasets are good, then the neural network
model can be considered to perform well for forecasting
the runoff with different sets of rainfall data of the water-
shed.

Regression model development

The MARS software was used to estimate the relative sig-
nificance of variables through sensitivity analysis. These
parameters obtained by operating the MARS tool were
further used in MATLAB for development of regression
equations. The concept of spline used in MARS is that of
the knot, marking the end of a region of data and the be-
ginning of another. The behaviour of functions changes at
the knot. MARS finds the location and number of knots
needed in a forward-backward stepwise fashion. Basic
Functions (BFs) are the machinery used in searching for
knots. Hockey stick BFs are used in the final prediction
model and serve as the core building block of MARS®.
The curve-fit toolbox of MATLAB was used extensively
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to study the data trends and explore different functions to
develop a multiple regression model. The equation builder
was used to develop an equation relating the morphologi-
cal parameters. Different possible mathematical associa-
tions were tried with the independent variables (eq. (9)).
The developed model was applied to a validation dataset
and the predicted values were compared with observed
values. The model efficiency factor E and R* of observed
and predicted values were estimated for different predictions
on validation datasets. The best model was selected based
on the E value approaching one®*. The model efficiency
factor was estimated for all the 20 validation sets using
the relation:

i(ﬁi _Oi)z
1— =

i(o,» -0)*
i=1

E= (1D

where n is the total number of observations, o; the ith ob-
served value, 6 the mean of observed values, and p; the
ith predicted value.

Results and discussion
Results of rainfall runoff models

Regression models for peak runoff rate: The best re-
gression equation obtained with the calibration dataset of
the total rainfall depth and corresponding peak runoff rate of
rainfall events selected for the periods from 1994 to 1997,
excluding any geomorphological parameters using the
MATLAB tool was:

R = 0.047%*p*-*% (R*=0.78), (12)
where R is the peak runoff rate in m”/s and P is the event-
based rainfall depth in mm.

The MARS tool was used to extract the relative impor-
tance of geomorphological parameters as associated with
rainfall and accordingly, Ry, Ry, Ry, Dy (drainage factor)
and Ry (relief ratio) were selected as sensitive parameters
for generation of runoff from rainfall. These parameters
were included in the development of the regression model
and different combinations of parameter values in the
curve-fit tool box of MATLAB resulted in a multiple regres-
sion model,

R=0.13P V% _ 087V _0.02PVR 4 4.631PVP"
~48.15P V& 1 455 (R? = 0.88). (13)
Neural network models: ANN models obtained using
the 20 shuffled datasets, when subjected to validation, resulted
in RMSE ranging from 0.0261 to 0.0573 and R* values
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Figure 6.

from 0.69 to 0.76. The ANN models were for the network
architecture having single input layer with two nodes, one
for event-based rainfall depth and the other for rainfall
duration. There were eight nodes contained in a single hidden
layer with one node in the output layer as peak runoff
rate. The ANN model was first developed without associ-
ating any geomorphological parameters. It was observed
that the standardization of input and output parameters
(eq. (10)) for training and testing the ANN model resulted
in slightly better RMSE during model training, but without
any significant change in R* value during model validation.
Further, GANN models were developed by feeding the
data to the network architecture with one input layer hav-
inqg six nodes, where five nodes represented the values of
R'Fe, RVRA, RVRL, RWQR and RVDF, and one node was fed with
rainfall durations of the selected events. The single hidden
layer consisted of eight nodes and the output layer was
for one node representing the peak runoff rate values. The
input and output values were also standardized using eq.
(10). The standardization also resulted in a better RMSE and
less significant change in R values. This ANN model ar-
chitecture was tested, trained and then validated for all
the 20 shuffled datasets. The model performance for valida-
tion datasets resulted in R* values ranging from 0.78 to
0.95 and E values from 0.71 to 0.82 for the shuffled data-
sets. Results of the model performance with the highest £
values of 0.82 and R” of 0.95 are presented in Figure 6.
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ANN predicted peak runoff rate from geomorphology-based rainfall input parameters.

The GANN model predicted peak runoff rates were seen to be
in line with the observed values for the selected rainfall
events (Table 2). It was observed during the model train-
ing that variation in the number of epochs did not im-
prove the model prediction. Finally, the developed ANN
model was applied on all the 64 datasets to predict the
peak runoff rate values, and the 1:1 line of observed and
model-predicted peak runoff rates resulted in the coeffi-
cient of determination (Rz) of 0.83 (Figure 7). The model
efficiency factor £ was reduced to 0.61. Moreover, per-
formance of the best-fit ANN model with all the selected
datasets revealed that the model can be used to predict peak
runoft rate from event-based rainfall depths over St. Esprit
watershed with acceptable accuracy.

Results of runoff and sediment yield models

Regression models for sediment yield: Regression models
to predict sediment yield were developed from the dataset
of mean runoff rates (m3/s) and mean sediment yield rates
(mg/l) for the selected rainfall events over the St. Esprit
watershed. The average value of the runoff and sediment
flow rates indicates a lumped parameter estimation ap-
proach in which the total sediment yield resulting from a
DRH can be approximated by multiplying the runoff
volume with mean sediment yield rates. Moreover, aver-

CURRENT SCIENCE, VOL. 89, NO. 12, 25 DECEMBER 2005



RESEARCH ARTICLES

Table 2. Observed and predicted peak runoff rates for different rainfall events on St. Esprit watershed using ANN model with validation data-
set, R* = 0.95 and model efficiency (E) = 0.82

Date of rainfall event  Rainfall depth (mm)  Rainfall duration (h)

Peak runoff rate (observed) (m?/s)

Peak runoff rate (predicted) (m?/s)

30-May-94 4.2 5.5 0.44 0.528
7-Jun-94 7.6 6.25 0.48 0.746
9-Jul-94 16.4 12.5 2.27 1.389
16-Jul-94 12 11.0 0.41 1.053
9-Aug-94 4.4 3.5 0.32 0.540
12-Apr-95 21.4 14.25 1.98 1.808
21-Apr-95 14 10.0 1.38 1.202
28-Apr-95 20.2 13.5 2.29 1.704
15-May-95 20.2 14.5 1.19 1.704
24-May-95 7.6 5.03 0.43 0.746
11-Jun-95 14.6 11.25 0.30 1.248
16-Apr-96 70.6 14.5 11.12 7.417
21-Apr-96 24.4 11.25 2.17 2.078
11-May-96 35.9 17.56 4.56 3.239
15-Jul-96 20.8 12.5 1.21 1.756
19-Jul-96 14.9 11.5 1.21 1.271
29-Mar-97 5.6 2.5 0.64 0.616
12-May-97 7.6 4.5 0.51 0.746

12 where Sy is the mean sediment yield (mg/l) and R, is the

mean runoff rate (m’/s). Using the morphological para-

meters Ry, Rg, R, Dr and Rg, the best-fit equation obtained

10 E =061 by trial and error approach was

y = 0.7207x + 0.4146
R2=0.8285

Predicted runoff rate (m%/s)

Observed peak runoff rate (m%/s)

Figure 7. Scatter-plot of observed and computed peak runoff rates
using the developed ANN model on complete set of randomized data.

aging of the sedimentation process from DRHs is more
useful than the time-paced sediment yield rates, in watershed
management for selection of appropriate soil and water
conservation structures. While developing the regression
models, the mean runoff and sediment loss rates of the se-
lected events from the year 1994 to 1997 were fitted using the
curve-fit tool of MATLAB software. The best model de-
rived from these data, without geomorphological parameters,
is

S, =0.1%R®, R* =039, (14)
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s, = 2.4R, Y% —6.308R, —0.82R Y** )
—3.77R V% +3.838R Y7 —57.44, R> =0.51.

The geomorphological parameters used in eq. (15) were
in the order of relative importance obtained from MARS,
starting with R, being the most sensitive parameter having
42% relative importance followed by Rg, R, Dr and Ry,
with decreasing trend of relative importance of 20, 15, 10
and 8% respectively. It was observed that by including
another sensitive geomorphologic parameter (hypsometric
integral)****, as indicated by MARS with relative impor-
tance of 5%, R? was increased by only 0.03 units, i.e. to
0.54, but subsequent addition or deletion of these morpho-
logical parameters in the regression equation did not yield
better R,

Neural network model for sediment yield: Using the ap-
proach detailed in previous sections, the R, and S, values
were shuffled and 20 randomized datasets were prepared
for 20 validations. ANN models were developed without
associating the morphological parameters having network
architecture of a single input layer with one node repre-
senting the mean runoff rates of the selected rainfall
events, a single hidden layer with eight nodes, and a single
output layer with one node of Sy values. The ANN mod-
els were trained, tested and validated for all the shuffled
datasets obtained, as discussed earlier. RMSE values were
different for different datasets and ranged from 0.047 to
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Figure 8. ANN model-predicted sediment yield from geomorphology-based mean runoff rate for different events.

0.069. The validation statistics corresponding to these RMSE
values resulted in R* values ranging from 0.68 to 0.76 and
E values varied from 0.59 to 0.68. The highest R value
was for the dataset with the lowest RMSE, whereas the F
value for the lowest RMSE was not the highest.
Geomorphological parameters were then associated
with rainfall values (eq. (15)) and the ANN architecture
with a single input layer with five input nodes represent-
ing the values of RQVRB, RQVRA, RQVRL, RaWQR and RQVD f, one
hidden layer with eight nodes and a single output layer
with one node was trained, tested and validated for all the
datasets, as discussed earlier. The resulting RMSE were
from 0.0364 to 0.096, R* values varied from 0.75 to 0.93
and E values from 0.65 to 0.76. The highest R’ (0.93) occur-
red for the lowest RMSE (0.0364), while the highest E
value (0.76) occurred for RMSE value of 0.0385. Finally,
the ANN model with highest E value (0.76) was selected
and the corresponding R* was estimated to be 0.92. The
observed and predicted values are presented in Figure 8.
It can been seen from Figure 8 that the ANN model-pre-
dicted sediment yields for a couple of events showed
comparatively larger deviation from the observed sediment
yield. The recorded data of the watershed revealed that
the events of 26 April 1994, 27 May 1994, 2 July 1994,
22 April 1995 and 21 April 1996, which showed more
deviation of sediment yield rate, were for longer duration
(>10 h) and very low intensities. Such type of events produce
less sediment outﬂowﬂ, which is also reflected in the re-
corded sediment yield data of the watershed. Therefore, it
was shown that the performance of the developed ANN
model in prediction of sediment yield due to short dura-
tion and high intensity events was better than the long du-
ration, low intensity events. This may be attributed to the
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black-box nature of the ANN model, which does not consider
the detailed water-budgeting, surface-water routing and
accounting of the spatial and temporal watershed hydrologic
responses for generation of runoff and sediment losses.

Conclusion

In the present study, an effort was made to compare the
ANN and regression models for prediction of peak runoff rate
from runoff depth and predication of mean sediment yield
rate from the mean runoff rate resulting from the rainfall
events of different intensities and durations over the St.
Esprit watershed. The Horton’s geomorphological pa-
rameters were associated with the hydrologic parameters
for development of the ANN and regression models. The
ANN and regression models developed through combina-
tion of soft computing techniques (i.e. ANN and MARS)
and mathematical association of the sensitive geomor-
phological parameters with the rainfall and runoff were stan-
dardized for modelling the watershed hydrologic responses.
However, neural network and regression models developed
for one watershed cannot be applied to other watersheds,
and also the functional relationship of geomorphological
parameters with rainfall and runoft will differ from one
watershed to another. However, the ANN modelling tech-
niques and methods developed through this research can
be replicated over other watershed systems to account for
hydrological responses. Efforts should also be made to
associate hydrological parameters with the watershed
morphological parameters through different mathematical
functions, to develop geomorphologic association func-
tions leading to more accurate prediction of runoff and
sediment losses.
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Nonetheless, keeping in view the objectives of the

study, it was confirmed that the inclusion of morphological
parameters in ANN and regression models enhanced model
prediction. In general, GANN models performed better
than regression equations. However, performance of the
ANN model was more accurate for short duration and
high intensity rainfall events of the St. Esprit watershed.
These research findings necessitate application to other
watershed systems and large datasets in India and abroad
under different agro-ecological regions, to strengthen the
methodology of ANN-based approaches for runoff and
sediment yield prediction.
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