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Mixed convection in a rectangular parallelepiped has
been studied by solving the Navier—Stokes and the energy
equations. The convective motion may show a time peri-
odic behaviour for certain combinations of the para-
meters, even though the boundary conditions are steady.
Further, certain features of dynamical systems like bifur-
cation, hysteresis and period doubling are also seen.
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WE report here some interesting results regarding mixed
thermal convection in a rectangular parallelepiped. Apart
from possible natural convection due to differential heating,
the fluid is also set into motion by the motion of the top lid
of the container (Figure 1), which moves in its own plane.
These two mechanisms of buoyancy (Rayleigh number Ra
is a measure) and forcing by the lid motion (Reynolds number
Re is a measure) lead to complex interaction'™.
Depending on the values of Re and Ra, the flow inside
the cavity may be: no flow (Re =0, Ra < Ra(crit)), steady,
periodic, quasiperiodic or turbulent. This critical value of
Ra to set the motion when there is no forcing due to the lid
motion has been calculated numerically. Also, the flow
has been mapped to identify the various regimes. More
interestingly, we have been able to detect periodic solutions
for a select combination of these two parameters. Further,
the features of a classical dynamical system like bifurcation,
period doubling, hysteresis and chaos usually observed in
phase space have been observed in physical space itself.

Formulation of the problem and numerical
solution

The geometry of the rectangular parallelepiped and the
coordinate axes are shown in Figure 1. The x-direction is
measured downward along gravity g. The lid moves with a
constant velocity v in its own plane along the y-direction.
The dimensions of the container are 5, [ and /;. All lengths
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are non-dimensionalized using /,” and velocities using v’ =
Vil (v is the viscosity, p the density of the fluid). Non-
dimensional variables are indicated without a prime. Then
I, =1. In this study we take /,=1 and spanwise aspect ratio,
SAR =1,=3. The four vertical side walls are insulated
and the no-slip velocity boundary condition is maintained at
all the six walls. The governing equations are the conti-
nuity, Navier—Stokes and energy equations with the
Boussinesq approximation®,

Other non-dimensional variables are time T = tv/(lx’)z,
pressure p = p'/[p(vwee )], temperature 0 = (T" — T;)/AT,
Re = (04li/v) = (vylvrey) = speed ratio of the 1id, Prandtl num-
ber Pr=uc,lk, Ra = gB | T5— T} 1 [7/(vaw). The value of Pr
is kept at 7 to match the value for water taken in Prasad
and Koseff’. The governing equations are:

D=Vu=0, )
du T T ,f » Ra
G VY =-Vp+Viu—&, L
aT—i-(M u p+Vauu—e, Pre’ 2)
2 I 1
= Vi =—VO.
o +@.V)e D7 0 3)
Instead of eq. (1), we solve a Poisson equation for p:
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Figure 1. Geometry of the cavity.
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Equations (2) and (3) are solved by the well-known Marker
and Cell (MAC) method on a staggered grid’. An important
improvement adopted here is the third-order upwind scheme®,
which has good stability characteristics and maintains at
the same time, third-order accuracy of the convective terms.
In the staggered grid arrangement, pressure and temperature
are stored at the cell centre and at the centre of each face
of the cell is specified the velocity component normal to
the face. Equations (2) and (3) are solved by time marching
using the Euler explicit scheme and eq. (4) for p is solved
iteratively by over-relaxation. A central difference scheme
is used to approximate all the terms except the convective
terms. To maintain this high accuracy, boundary condi-
tions are also approximated by second-order schemes.
Thus, the overall accuracy of the numerical scheme is second
order in space and first order in time.

The computational procedure has been tested extensively
and some of the results are reported in Deshpande’. Grid
independence studies and tests to check the adequacy of
other computational parameters like time increment AT, have
been conducted successfully. The results for the classical
Rayleigh-Benard problem™® were also reproduced success-
fully. Based on these tests, a (44 X 44 x 124) uniform, car-
tesian grid was found to be quite adequate for this study.
Comparison with the results of Chiang et al.’, as seen in
Figure 2, is satisfactory even though there is a localized
discrepancy of about 6% in the maximum velocity around,
y=10.7.

Results and discussion

Numerical calculations have been carried out for six values
of Re =0, 1, 50, 100, 200 and 400 and for a large number of
combinations of Re and Ra. We will present here some
sample results to describe different flow regimes, but concen-
trate on only two values of Re = 50 and 200 to emphasize
the appearance of periodicity, bifurcation and hysteresis of
the flow.

A word of caution is in order here. When we will be
claiming periodicity in time and symmetry in z of the
flow field, it should be kept in mind that these results
were obtained numerically and one cannot hope to prove
here these properties in a rigorous mathematical sense.
Enough care has been taken to check these properties,
whenever such a claim is made, to go beyond graphical
representations. Numbers were checked manually up to five
significant figures to supplement the powerful flow-
visualization tools. The claims made here like ‘symmetry
is exact’, etc. are subject to the intrinsic limitations of the
numerical methods. A similar difficulty arises when the num-
ber of stagnation points is counted (e.g. Table 1). In a
numerical method, one cannot resolve the flow field indefi-
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nitely and the possibility exists of the stagnation points in
the corners, etc. where the flow is weak and the length
scales may be small due to secondary vortices. Hence in the
count of stagnation points here, we include only those in
the bulk of the flow field.

In Figure 3 are shown the streamline patterns for Re =1
and two values of Ra. Flow is steady for both the cases
and is symmetrical about the mid z-plane, z=1.5. At Ra =
10,000, there is only one stagnation point, but at
Ra = 100,000, the flow divides into cell-like structures and
there are nine stagnation points. At values of Ra still higher
flow becomes unsteady. The influence of these two parame-
ters is shown in Figure 4. When Re = 0, there is natural
convection if Ra > Ra(crit). This critical value has been
determined numerically to be 2559 + 2. For smaller values
of Ra, there is no motion and we have pure conduction. The
value of Ra(crit) for a cube'® was found to be 3386.75 +
0.25. The present lower value for a SAR of 3 is to be ex-
pected. The flow remained steady up to Ra =3 x 10” and it
was found to be turbulent at Ra = 10°, When Ra is increased
from Ra(crit) to 3 X 10°, drastic changes occur in the vortex
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Figure 2. Velocity plots along the centreline of two axes showing
comparison between data of Chiang er al’ and the present case for
Re =400 and Ra = 0.

Table 1. Number of stagnation points and closed streamlines for dif-
ferent combinations of Re and Ra in a rectangular parallelepiped of
spanwise aspect ratio 3. Pr="7.0

Number of stagnation points (no. of closed loops)

Ra —
Rel 0 10* 4x10* 5x10*
1 3(%) INQ) - 10
50 3(4) 3 (%) 10 -
100 1(0) 10 - 10
200 1(0) 10 - 10
400 1(0) 10 - 10

*Because of the nearly 2D nature of the flow, streamlines in the z = 1.5
plane are almost closed. Hence it is difficult to conclude anything by
numerical tools.
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Figure 3. Top view showing vortices for Re =1 and two different Ra. a,

structure of vortices for Ra = 100,000. There are nine stagnation points.
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Tﬁbulent
6 o
1 0 I3 1 i 1
Turbulent” S
3
§ Loss of pariodicith -
a with time{3 x 10'
6 vortices” ":‘ﬁ'w'fm e Periodic
~ {95,000)f periodic Steady(1.5 x 10°
] S AU | S  jomsenaisoson gl (93,0000 g i
/ 7 T, Non-periodic(54,000)
12 von‘c so,tmn-vmm-vcriodic: d
igigg:g-m?::iwk E (9:,:)0%) . a No motion
49,000 Steady Steady . : |
{53,000) .
Ra 3 steady case
104 E Unsteady §ase ‘ -
6 vortice:
2559 + 2(Crit Ra)”
103
01 50 100 150 200 250 300 350 400 450

Re

Figure 4. Plot of Ra versus Re showing periodic, aperiodic and turbulent cases. Pr = 7.0.

Table 2. Location of stagnation points in a rectangular parallelepiped
of spanwise aspect ratio 3 for Ra = 0 and different Re

Left half Central plane (z;= 1.5)
Reynolds
number (Re) X Vs Zs X Vs
1 0.23524 0.50166  1.0320 0.23602 0.50168
50 0.24150  0.57640  1.1770 0.24150 0.57640
100 - - - 0.26180 0.61490
200 - - - 0.33230 0.59600
400 - - - 0.40880 0.53670
7 ]
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Figure 5. Streamline plots at time 1t =60.18675 for Re =50 and
Ra =50,000.
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structure even though the flow remains steady. No at-
tempt has been made to identify the boundaries of differ-
ent regimes, which may not even be sharp. Details of this
flow are available in Deshpande’ and Deshpande and
Srinidhi'".

When Ra =0, we get the other limiting case and motion
is present for all the values of Re. This is the classical lid-
driven cavity case'”. Flow is steady for all the values of Re
studied. Secondary vortices are present along the two span-
wise bottom corners. For example, Figure 3 a shows one
secondary eddy, even though in that case Ra=#0. At
Re =1 (and Ra = 0), there are three stagnation points, one
on the mid z-plane and the other two located symmetrically
(Table 2). Table 2 can be used conveniently to imagine
the qualitative change that takes place. We had difficulty
in identifying the stagnation points at Re = 0.1, since the
flow turns out to be almost 2D. Closed streamlines are rare
in three-dimensional flows, but they do exist here (Table
1). Table 1 is a summary of the drastic changes in the
flow structure that take place when Re and also Ra are
varied.
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Table 3. z-location of stagnation point(s) at different phase locations in the periodic flow at Re = 50 and Ra = 50,000 in a rectangular parallelepiped of
spanwise aspect ratio 3. Pr="7.0
Point Time Relative time (%) Zs Comment
1 57.58225 0.000 1.88 Two left stagnation points just degenerate and disappear at z = 1.5
2 58.30025 9.978 1.864 Single stagnation point
3 58.80000 16.924 1.820
4 59.08225 20.846 1.789
5 59.88675 32.027 1.635
8 60.18675 36.196 1.540
10 60.38675 38.976 1.473
11 60.46925 40.122 1.453
12 60.55150 41.265 1.454
14 60.66175 42.798 1.478
15 60.68900 43.176 1.485 w—z plot has a point of inflection
16 60.71650 43.558 1.282, 1.483, 1.728 Three stagnation points
18 60.87675 45.786 1.046, 1.482, 1.979
19 60.96400 46.998 1.023, 1.468, 1.995
20 61.04675 48.148 1.027, 1.478, 1.976
22 61.21150 50.437 1.057, 1.473, 1.936
25 62.49575 68.286 1.066, 1.453, 1.926
26 64.38675 94.566 1.086, 1.266, 1.907 Three stagnation points
27 64.77775 100.000 1.880 End of three stagnation points

TIME ©

Figure 6. Velocity—time trace at (0.23750, 0.5, 1.5) for Re =50 and
Ra =50,000. 1 to 27, indicate points that are being considered for the
study.

Periodic flow at Reynolds number 50

At Re = 50, if Ra is increased gradually, the flow remains
steady up to Ra = 40,000. Still there is a drastic change in
the flow structure when Ra is increased from 10,000 to
40,000. As seen from Table 1, the number of stagnation
points decreases from 3 to 1, accompanied by a change in
flow direction. Figure 5 shows the streamline pattern at
some instant and for Ra = 50,000. The flow is unsteady
and unsymmetrical about the mid z-plane, which divides
the flow into two primary vortices, one on each side. The
flow in the vortex core is towards the mid z-plane. Outside
the vortex core, the flow has to move towards the end planes.
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Figure 7. Temperature—time trace at (0.5, 0.41250, 1.5) for Re =50
and Ra = 50,000 with two different initial conditions. Comparison
showed that the same solution is retained even with change of initial
condition.

For this (Re, Ra) combination the flow was found to be peri-
odic in time, as seen from the velocity—time trace in Fig-
ure 6. It is somewhat surprising that such a complex flow
field involving secondary vortices and governed by non-
linear equations, can be periodic. This amounts to every
variable at every point in the cavity changing periodically.

To investigate the robustness and reliability of this sur-
prising periodic behaviour, some tests were conducted. Re-
sults of one such test are shown in Figure 7, where
computations are started with different initial conditions
to check if the same periodic flow for Re = 50, Ra = 50,000
is reached. The case with Ra = 10,000 as the initial condition
is steady but that with Ra = 45,000 is unsteady and non-
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Figure 9. Velocity vector plots at x = 0.95 plane at different times in a single period for Re = 50 and Ra = 50,000. a, © =59.08225 (P4). b,
T =060.18675 (P8). ¢, T = 60.46925 (P11). d, 1 = 60.66175 (P14). (e) T = 64.38675 (P26).

periodic. See that the second case quickly changes the period
and falls in line, indicating the robustness of the flow. Another
test will be described later.

Referring back to the periodic time trace in Figure 6, the
period here is 7.1952 time units and points have been marked
1 to 27 to study changes during one cycle. Velocity profiles of
w as a function of z along the vortex centre for different
times are shown in Figure 8. The sign of this velocity
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component is an important indicator of the axial motion
of the vortices and hence this picture describes the overall
flow in a qualitative sense. The location of the stagnation
point is given in Table 3. For points 1 to 15, there is only
one point where the w component becomes zero on the z-
centreline. For points 16 to 26, we have three such points.
This periodic phenomenon is not symmetric in z. Since there
is no speciality about one side of the cavity, another solution

CURRENT SCIENCE, VOL. 89, NO. 10, 25 NOVEMBER 2005
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should be possible which is also periodic and is the mirror
reflection of the present solution in z. We may refer to the
multiplicity of the solutions found in natural convection
inside a cube'®" and its symmetric variants. The velocity
vector plots on plane x = 0.95 which is close to the cavity
bottom plate are shown in Figure 9. Heat flux plots at the
bottom plate at these five points (i.e. times in the periodic
cycle) are shown in Figure 10. Figures 8-10 clearly indicate
how the flow is oscillating non-symmetrically about the mid
z-plane unlike, as we will see, the next case for Re = 200.
To investigate how reliable is the periodicity, the ve-
locity and temperature profiles over an entire line in the
cavity were checked for exact repetition after a complete
cycle. One such plot is shown in Figure 11 a. We see that the

Figure 10. Heat flux contours at bottom plate x = 1 at different times
for Re =50 and Ra = 50,000. Minimum and maximum values of heat
flux are shown in brackets. a, T = 59.08225 (P4). (min = 1.163, max =
9.171). b, ©=60.18675 (P8). (min=1.165, max =8.942). ¢, 1=
60.46925 (P11). (min=1.101, max = 8.413). d, 1 =60.66175 (P14).
(min = 1.161, max =9.134). e, 1 =64.38675 (P26). (min = 1.166, max =
9.061).
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Figure 11. Comparison of temperature profiles of two periodic solu-
tions obtained by two different Re and Ra combinations. a, Comparison
between three cycles (2nd, 3rd and 43rd) to check for stable periodicity
at Re =50 and Ra = 50,000. b, Comparison between three consecutive
peaks in a single period at Re = 200 and Ra = 94,800. T = 0.4316.
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Figure 12. Period T plotted as a function of Ra for Re =200 and
Pr =7.0. Dashed lines indicate unstable solution.
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Figure 13. Temperature—time trace at the point (0.5, 0.41250, 1.5) for Re = 200 and Pr = 7.0 and different Ra. Points indicated in brackets corre-
spond to same points in Figure 6. @, Ra = 92,500 (point K); b, Ra = 94,800 (point Q); ¢, Ra = 94,800 (point V) and d, Ra = 95,800.

entire temperature profile repeats exactly after one and even
41 cycles assuring exact, stable periodicity. Similar checks
were carried out for other variables along different lines.
When Ra is increased to a slightly higher value of 60,000,
periodicity is lost. For a much higher value of Ra = 10° the
flow resembles turbulence'”.

Periodic flow at Reynolds number 200

Now we take up another case of Re = 200, where periodicity
is observed in the neighbourhood of Ra = 93,000. We also
see here the phenomena of bifurcation, period doubling and
hysteresis. Referring to Figure 115 for Re = 200 and Ra =
94,800, we see exact replication of the temperature profile
after period 7= 0.4316. In Figure 12, time period T of the
flow is plotted as a function of parameter Ra. Up to Ra =
90,500 corresponding to point C on the graph, the flow, is
steady leading to T'= (0. An increase in Ra leads to the ap-
pearance of unsteady periodic flow, where period T increases
gradually with its value being around 0.4. Thus a bifurcation
has taken place from an equilibrium solution (steady) to
another one (periodic). A subsequent bifurcation around
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Ra =95,000 leads to period doubling and the next equi-
librium solution moves along UVWXY. The period T at
Ra =94,700 changes from 0.430 (at point P) to 0.859
(point U) and at Ra = 94,800, from 0.4316 (Q) to 0.8624
(V). These values are tabulated in Deshpande and Srinidhi®.
We may add here that the periodic case for Re = 200 on both
these branches is associated with exact symmetry about the
mid z-plane at every instant. Around both of these bifurca-
tions we see an overlap of the curves, indicating a hys-
teresis in the flow. A further increase in Ra beyond point
Y leads to the loss of periodicity. The top branch in Figure
12 is shorter than the middle branch. All these features
are similar to elementary model bifurcations'”. It may be
noted that every point A to Y on the branches in Figure 12,
corresponds to an equilibrium solution.

It is interesting to see that the time traces and the velocity
and temperature profiles for these cases give us a clue about
the mechanism of bifurcation. In Figure 13, time traces for
0 are shown for four cases of Ra: point K, Ra = 92,500;
point Q, Ra =94,800; point V, Ra =94,800 on the top
branch and finally for a non-periodic case Ra = 95,800.
This non-periodicity is associated with the loss of symmetry
in z. These time traces indicate how a small change in Ra may
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lead to a drift to another branch in the bifurcation diagram.
Specially notice Figure 13 b and ¢, which is for the same
value of Ra = 94,800. Periodicity is lost for Ra = 95,800.
Velocity and temperature profiles indicate a slight local
drift, but agree in most of the locations when period doubling
takes place. Figure 115 is a temperature profile for an inter-
mediate peak point T = 103.430 inside a period. The heat
flux plots for the bottom plate in Figure 14, show drastic
variation in quantity. These plots were made at some arbitrary
values of time. The patterns for the same value of Ra = 90,500
(frames a and b) and also Ra = 94,800 (frames ¢ and d),
are qualitatively different, but both the sets correspond to pe-
riodic flows that are also symmetrical in z. In frame e for
Ra = 95,700, periodicity and symmetry are lost.

Figure 14. Heat flux contours at bottom plate x = 1 for Re = 200 and
three values Ra. Minimum and maximum values of heat flux are shown
in brackets. @, Ra = 90,500 (point C). (min = 1.337, max = 13.575). b,
Ra =90,500 (point H). (min = 1.337, max = 13.575). ¢, Ra = 94,800
(point Q). (min = 1.337, max = 13.575). d, Ra =94,800 (point V).
(min = 1.385, max = 14.782). e, Ra=95,700 (min=1.074, max =
14.340).
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Now we move to another interesting comparison with a
relatively high value of Ra = 10°. The first frame in Figure
15 with Re = 0 corresponds to natural convection. The flow
seems to get organized into small cells as Re is increased.
The average Nusselt number (Nu) variation as a function
of Ra for different Re is shown in Figure 16. These plots
do not give a clue to the drastic changes that take place in

Heat flux contours at bottom plate x = 1 for Ra = 10° and

Figure 15.
different Re. Minimum and maximum values of heat flux are shown in
brackets. @, Re=0 at ©=11.14425 (min = 1.262, max = 22.751). b,
Re =1 at 1=77.08225 (min = 1.318, max = 23.486). ¢, Re =50 at 1 =

5.2221 (min=1.111, max = 24.696). d, Re =100 at 1= 3.42205
(min = 1.424, max = 30.315). e, Re = 200 at T =67.2901 (min = 1.409,
max = 35.316). f, Re=400 at 1=47.99005 (min=1.232, max =
29.952).
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Figure 16.
values of Nu are taken at some arbitrary instant.

the flow. Attention is specially drawn to the unusual case of
Re =1, where this slight forcing (compared to Re = 0) may
even decrease the average heat flux.

Conclusion

We have observed periodic mixed convection even when
the boundary conditions applied were steady. Periodicity
may or may not be associated with symmetry in z. When it
was associated with symmetry, loss of periodicity and loss of
symmetry were observed to occur together. The classical fea-
tures of dynamical systems like bifurcation, hysteresis and pe-
riod doubling usually observed in phase space are seen
here in physical space itself. These results, apart from be-
ing of fundamental importance, have practical relevance'® in
areas like material processing and other engineering applica-
tions.
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