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Serial order processing or sequence processing underlies
many human activities such as speech, language, skill
learning, planning, problem-solving, etc. Investigating
the neural bases of sequence processing enables us to
understand serial order in cognition and also helps in
building intelligent devices. In this article, we review
various cognitive issues related to sequence processing
with examples. Experimental results that give evidence
for the involvement of various brain areas will be de-
scribed. Finally, a theoretical approach based on statis-
tical models and reinforcement learning paradigm is
presented. These theoretical ideas are useful for study-
ing sequence learning in a principled way. This article
also suggests a two-way process diagram integrating
experimentation (cognitive neuroscience) and theory/
computational modelling (computational neuroscience).
This integrated framework is useful not only in the pre-
sent study of serial order, but also for understanding
many cognitive processes.

Keywords: Cognitive science, computational modelling,
reinforcement learning, serial order, sequence learning.

‘... the coordination of leg movements in insects, the song
of birds, the control of trotting and pacing in a gaited
horse, the rat running the maze, the architect designing a
house, the carpenter sawing a board present a problem of
sequences of action . ..’ .

— Karl Lashley'

SERIAL order in behaviour has been studied for a long time.
Serial order processing or sequence processing is a key
issue in many areas of cognitive science such as auditory
perception, visual perception (three-dimensional object rec-
ognition), speech perception, language, skilled behaviour,
goal-directed planning, and problem-solving. The role of
serial order in cognition can be investigated using a two-
pronged approach. First, an experimental approach can be
adopted that reveals brain areas (neural bases) involved and
their interactions while human or animal subjects are engaged
in tasks such as pressing buttons in a particular order, operat-
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ing a lever in a specified sequence, etc. that require sequence
processing. Such experimental investigation strategies
form the core of cognitive neuroscience. Secondly, a model-
ling approach can be adopted that enables mathematical
and computational formalization of the dynamics of brain
activation observed through experiments. Modelling and
simulation methods form the core of computational neu-
roscience. It is expected that computational neuroscience
efforts would eventually pave the way for building intel-
ligent devices.

Before enumerating the issues related to sequence process-
ing, serial and parallel aspects of cognition are clarified by
taking face perception as an example. Recognizing a face ap-
pears to involve parallel processing, whereby various fea-
tures of the face are apprehended simultaneously and
recognition ensues from the parallel operations. However,
experimental evidence suggests that face perception involves
serial processing. Yarbus®, in a classic experiment, monitored
subjects’ eye movements as they viewed portraits. Subjects
reported apprehending the portrait as a whole, but their
eye movements revealed a different phenomenon. During
the process of perceiving the face, observer’s attention moved
from one point of fixation to another. By analysing the
distribution of points of fixation, the duration of fixation
and the distinctive cyclic pattern of examination, Yarbus con-
cluded that the subjects made saccadic eye movements,
fixating successively at the most informative parts of the
image. Thus these observations point out that underlying
an apparently parallel process of face perception, there is
a serial oculomotor process. This example is presented to
clarify the meaning of serial and parallel processes and
also to point out that many cognitive phenomena have both
the aspects.

In this article, we take serial order in cognition as an
example to illustrate how a cognitive phenomenon can be
investigated in a multidisciplinary fashion. Experimental
investigation of various aspects of serial order such as
perception, learning, representation, organization, neural
bases comprises the cognitive neuroscience perspective.
We propose a theoretical modelling approach, wherein
Markov models and reinforcement learning are combined in
order to understand sequence processing from the compu-
tational neuroscience perspective. Finally, we advocate
an integrated framework that combines experimentation
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and computational modelling to enable holistic investiga-
tion of a cognitive phenomenon.

Issues related to serial order

In the following sections, a detailed discussion of several
issues related to serial order is presented. The issues discussed
are the origin of sequential behaviour in humans, possible
representation schemes available, the organization of se-
quences, the order and timing of individual elements of a
sequence, learning modes, stages and strategies applica-
ble for sequence learning and the issues in sequence percep-
tion. It is to be noted that no single paradigm covers all
the issues in a unified fashion. Therefore, we discuss each
of these issues with the help of a representative example.

Origins of sequential behaviour

There are broadly two classes of origin for sequential behav-
iour — one is evolutionary and the other is through learn-
ing. A variety of natural sequential patterns or ritualistic
behaviours can be seen in many species, including humans.
Some examples are the grooming movements in rats, locomo-
tion, mastication, rhythmic respiratory movements, etc.
Many species apart from humans are also capable of ac-
quiring sequential behaviours via instrumental condition-
ing. In the following, we give one example of pre-wired
behaviour (grooming) and two examples for learned behav-
iour (working memory, imitation).

Berridge and Whishaw® have studied ritualistic grooming
movements in rats. They demonstrated a crucial role for
the neostriatum in exhibiting species-specific (genetic or
pre-wired) sequencing behaviours in rats. On the other hand,
examples of learned (adaptive) behaviour include speech,
language, skills, etc. We now present examples of sequential
nature in adaptive behaviours, such as working memory
and imitation learning.

Working memory tasks involve linking events across time
and are also essential for goal-directed behaviour. An impor-
tant component in serial order in behaviour is the ability
to hold information on-line, and being able to sequence
behaviours in order to attain the desired goal. Diamond”
studied performance of infants and monkeys on delayed
response tasks that assess the working memory capacity.
These tasks require subjects to hold information for a
length of time in the mind, even in the absence of external
cue. The subject initially watches the experimenter hide a
desired object in one of two identical wells. After a brief
delay, during which the wells are hidden from view, the
subject is allowed to reach out and retrieve the hidden ob-
ject. Infants of 7.5-9 months fail delayed response under
the same conditions and in the same way, as do monkeys
with lesions of the dorsolateral prefrontal cortex. It is
therefore suggested that improved performance on this task
is an index of maturation of frontal cortex function. Diamond*
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proposed that maturation of the prefrontal cortex might
make possible the age-related developmental progression
of human infants on working memory tasks. The working
memory studies described above give clues to the adaptive
origin of some behavioural sequences.

Certain types of adaptive behaviour such as imitation
also involve serial order. It has also been proposed that
propensity to engage in complex sequential activities
such as imitation is a precursor to high-level behaviours
such as empathy and mental simulation®. This kind of
imitation-based learning is a useful adaptive behaviour
and is being increasingly used for training robots. Schaal®
demonstrated that imitation learning offers a promising
route to gain new insights into mechanisms of perceptual
motor control that could ultimately lead to the creation of
autonomous humanoid robots.

Thus, some behavioural sequences have pre-wired origin,
while many more are learned.

Representation of sequences

In the following we present evidence for both distributed
and local representation of human movements. Geor-
gopoulos ef al.” have shown that reaching movements of the
arm are represented not by single neurons, but by the com-
bined activity of a large population of cells in the motor
cortex of the brain. These researchers recorded 568 cells
in monkey cortex, while it performed reaching arm move-
ments. They found that each individual cell responded
best for arm movements in a given direction, and its re-
sponse gradually tailed-off for arm movements in adja-
cent directions. They argued that the direction of movement
is represented in the motor cortex by a population vector,
which rotated when the monkey intended to move a lever
in a rotated direction, prior to movement. This experiment
illustrates the distributed nature of representation for ele-
mental movements in the motor cortex. Recent studies by
Lu and Ashe® suggest that apart from elemental move-
ments, sequential movements also have distributed repre-
sentation.

On the other hand, there is experimental evidence sup-
porting local representation of sequence of movements.
Tanji and Shima® have found a group of cells in the cere-
bral cortex of monkeys whose activity is exclusively related
to a sequence of movements performed in a particular order.
Two monkeys were trained to perform three movements
(push, pull or turn a manipulandum) in four different or-
ders. Before each movement, monkeys waited for a tone
that served as a movement trigger. During learning phase,
the correct movement was indicated by a green (push),
yellow (pull) or red (turn) light. After five learning trials,
the monkeys performed the sequence from internal memory
in the absence of external visual cues. It was observed
that the cells in the supplementary motor area (SMA) were
active while the animal was waiting to perform a motor
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sequence of turn—pull-push. But such activity was not
observed while the monkey was waiting to perform a dif-
ferent sequence of turn—push—pull for which a different
set of cells was activated.

In summary, while studies by Georgopoulos et al.’, and
Lu and Ashe® indicated a distributed representation for
individual arm movements, studies by Tanji and Shima’
suggested a possible local representation for sequences of
movements.

Organization of sequences

Internal organization of behavioural sequences can be either
linear (flat) or nonlinear (hierarchical) (Figure 1). Lashley1
argued that the sequential responses that appear to be organ-
ized in linear and flat fashion concealed an underlying hi-
erarchical structure. Hierarchical representations of sequences
have an edge over linear representations. They allow easier
access to common subroutines of sequences, easier to
self-repair in the event of failure, and combine efficient
local action at low hierarchical levels while maintaining the
guidance of an overall structure. A linear (flat) organiza-
tion of a sequence will be in the form of one long linear
string of actions, as shown in Figure 1. While the repre-
sentation is simple from storage point of view, there can
be potential problems during retrieval. For instance, if the
nth element has to be retrieved, all the n— 1 preceding
elements have to be processed. Further, if there is a break
in the chain, subsequent elements will become inaccessi-
ble. On the other hand, a hierarchical representation
would have multiple levels of representation. Figure 1 shows
a two-level hierarchical representation. At the lower
level, representation of the elements of the sequence is flat.
At the higher level, control nodes (chunk nodes) are con-
nected among themselves in a linear fashion and also
connect to their respective sequence elements forming a
hierarchy. A break in the link between lower level nodes
does not render any part of the sequence inaccessible,
since the control nodes (chunk nodes) would still be able
to facilitate access to the lower level nodes.

Figure 1.

In human behaviour, hierarchical structuring has been
argued to be essential for many acquired skills, such as
language, problem-solving and everyday planning'®"’.
Further, studies show that representation at the higher level
supports grouping of low-level units to form what are popu-
larly known as chunks'*". Chunking also enables over-
coming the limitations imposed by limited-capacity working
memory, whose limit is proposed to be 7 + 2 constituents™.
In summary, strength of the evidence from experimental
and theoretical studies so far points to a hierarchical rep-
resentation.

Encoding of serial order

The order of encoding of sequence of entities into long-term
memory is another issue to be considered in serial order.
The items could be stored in the order they are encountered,
i.e. the first items are stored with more emphasis than the
last items or the other way round. If the first items are stored
more strongly and recalled more easily, then the process
is said to have primacy effect. On the other hand, if the
last items are emphasized more and retrieved with ease,
then the process is said to possess recency effect. Figure 2
shows a serial learning curve that is typically seen in list
learning tasks. This curve reveals that subjects recall words
presented at the beginning and the end of a list, better than
words presented in the middle. Items at the beginning may
take advantage of the long-term memory laid down by more
frequent rehearsals. Items at the end are easy to recall because
they are active in working/short-term memory®'. Any
study of serial order has to address the primacy and re-
cency issues.

Timing-related issues

Apart from issues related to representation, organization
and order of sequences, the timing of individual units in a
sequence is also an important factor. For example, in poetry,
if the relative timing is not maintained, the rhythm is lost.

Flat versus hierarchical representation. Schematic diagram depicts a sequence of seven elements represented in flat

(linear) and hierarchical (nonlinear) arrangement. In hierarchical organization, nodes a;2; and asse; represent chunks of elements.
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List position

Figure 2. Serial position curve showing the relationship between the
list position of an item and associated probability of recall. The first
half of the curve where the first few elements have higher recall prob-
ability depicts the primacy effect. In the second half, the last few items
have higher probability of recall, pointing to the recency effect in serial
list learning.

On the other hand, it has minimal effect in prose-like text.
There are three attributes for timing, namely execution
time of each individual unit in a sequence, time delay be-
tween two consecutive units, and overall time taken for
sequence execution. The first two attributes can be either
fixed throughout the entire sequence or variable. The varia-
tions could possibly depend on the context of occurrence
of each individual unit in the sequence. Thus timing and
temporal modulation issues are important for deeper investi-
gation of sequence processing. In a recent review, Janata
and Grafton® suggested three important subcomponents
related to understanding neural basis of serial order in music.
They are timing, attention and sequence learning. Janata
and Grafton® argued that studying aspects of music would
lead to better understanding of complex human behaviours.

Learning of sequences

In this section, we will discuss different aspects related to
learning, such as implicit and explicit learning modes,
stages in learning, and learning strategies.

Learning modes: Learning of serial order may be operat-
ing in one of the two modes — explicit learning mode or
implicit learning mode. Explicit learning includes con-
scious attempts to construct a representation of the task;
directed search of memory for similar or analogous task-
relevant information, and conscious attempts to derive and
test hypotheses related to the structure of the task®. This
type of learning has been distinguished from alternative
modes of learning, termed implicit learning, in which task-
relevant information is acquired automatically and without
conscious awareness of what is being learnt. An example
of implicit learning task is SRT (serial reaction time) task,
where the subjects execute sequential finger movements in
response to visual cues that appear one after another. Un-
known to the subjects, a repeating sequence is embedded
among the random sequence of cues. Although subjects
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do not become aware of the repeating sequence, they ex-
hibit improved response times during the execution of the
recurring sequence compared to the random ones. The
improved response times are attributed to implicit learning.
It has been found that distinct brain areas are involved in
implicit and explicit learning modes™*.

Learning stages: It is a common observation that when
a skill, involving sequence of entities, is being acquired,
we need to be more attentive in the initial phase; however,
during the later, more automatic phase, attention can be
engaged in other tasks. Fitts™ proposed a framework for skill
acquisition that included two major stages in the develop-
ment of a cognitive skill: a declarative stage in which
facts about the skill domain are interpreted and a proce-
dural stage in which the domain knowledge is directly
embodied in procedures for performing the skill. Brain
activation differences were also observed when subjects
learned a sequential skill and progressed from the early,
more deliberate and attentive stage to the late and more
automatic stage*® >,

Learning strategies: We can distinguish learning strate-
gies broadly into two main categories: supervised and unsu-
pervised, based on whether evaluative feedback was provided
or not. Feedback signal provides an assessment of the
performance of the system during the learning process. In
supervised learning, we assume that the teacher provides
the desired response at each instant of time that can be used
to calculate the errors and make appropriate corrections in
order to eventually achieve the desired target. In a variation of
supervised learning called reinforcement learning, a
coarse feedback indicating the quality of the output is
provided without specifying the desired response itself. In
unsupervised learning, the desired response is not known.
Thus explicit error information cannot be used to improve
behaviour in unsupervised learning. The system needs to
discover the inherent regularities present in the inputs and
self-organize the information. It has been proposed that a
different set of brain areas is associated with different
learning strategies® . Thus adaptive sequential behaviours
could be acquired using any one of the strategies, i.e. super-
vised, reinforcement, or unsupervised learning.

Perception issues in sequence processing

A potential theory of serial order needs to deal with various
sequence perception problems organized broadly into two
categories: sequence recognition and sequence recall/
generation. These problems can be stated formally as shown
below™"!.

(i) Recognition: Given a sequence S;, Sip,..., S the
recognition problem involves determining if the given se-
quence is legitimate or not.
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Si» Sis1-..,8r— Yes or No, where 1 <i <k <oo,

(i) Recall/generation: Given a sequence S;, Sip...,Sk
recall or generation problem involves generating or re-
calling the next item S, ;.

Si, Si+1...,Sk—>Sk+1, where 1 <<k < oo,

In both recognition and recall, an internal representation
of sequence may be needed for making perceptual judgments
and for prediction (or generation) of subsequent elements,
respectively. Future experimental investigations would need
to tease out differences in the cognitive processes involved
and the concomitant differences in brain areas sub-serving
recognition and recall/generation of sequences.

Brain areas sub-serving aspects of serial order

The current working assumption in neuroscience is that
various functions are organized in a modular fashion in
the brain. In this section, we shall first present a brief over-
view of various brain areas and their function.

The central nervous system is composed of the brain
and the spinal cord. Stimuli from sensory/peripheral organs
are carried via the spinal cord and processed in the brain.
The corresponding motor signals (outputs) get transmitted
to the appropriate peripheral system via the spinal cord. The
brain is composed of three major components, namely the
cerebrum, the cerebellum, and the sub-cortical areas. The
brain is divided into two hemispheres called the left hemi-
sphere (left lobe; Figure 3) and the right hemisphere (right
lobe). These hemispheres have rich interconnections
through the corpus callosum. A prominent groove on the
surface of the cerebrum when viewed from the top and run-
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Figure 3. Generic brain areas. The four lobes of the brain (Image
from Purves et al., Life: The Science of Biology, 4th edn; used with
permission from Sinauer Associates Inc., USA, 1999).
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ning from left to right, serves as a standard landmark
called the central sulcus. The cortex anterior to the central
sulcus is called the anterior (frontal) lobe and that which is
posterior is called the posterior lobe. Anterior lobe com-
prises the prefrontal cortex, supplementary motor area,
pre-motor area and the primary motor area. Posterior lobe
comprises the sensory cortex, parietal cortex, occipital
(visual) cortex and the temporal areas. Some of the prominent
nuclei that lie below the cerebrum, i.e. in the sub-cortical
region are the basal ganglia, the hippocampus and the amyg-
dala.

The cerebellum is located below the cerebral cortex.
The spinal cord connects the brain at the base near the
medulla oblongata. In the remainder of the section, we
describe results from our own and other experimental efforts
investigating the brain areas associated with various aspects
of serial order.

Brain areas involved in serial order

In this subsection we summarize some representative experi-
mental findings corresponding to the issues related to se-
rial order elucidated earlier.

Origins: The area specifically proposed for procedural
memory (such as skills and habits) is the striatum®. Berridge
and Whishaw’ showed that lesions of the precentral corti-
cal areas or of other neo-cortical areas did not affect the
performance of ritualistic behavioural sequences in rats.
On the other hand, lesions of the neostriatum, which receives
inputs from the cerebral cortex, impaired the performance
thereby implicating a role for the striatum in pre-wired
behavioural sequences. Curran® and Clegg er al.” also
summarized evidence for striatal involvement in sequence
learning based on experiments involving implicit learning
tasks such as the SRT.

Representation:  Studies by Georgopoulos et al.” and Lu
and Ashe® suggested a distributed representation for individ-
ual arm movements in the motor cortex of rhesus mon-
keys. On the other hand, Tanji and Shima’ demonstrated
experimental evidence supporting local representation of
sequence of movements in the SMA of monkeys.

Organization and timing: Apart from the above findings,
there are other studies that investigated neural bases re-
sponsible for the timing and chunking aspects in serial
order. Timing aspects in sequence learning have been ex-
plored and the cerebellum is found to be critically in-
volved™”. Disruption of chunk representation of movement
sequences in pre-SMA was demonstrated using transcranial
magnetic stimulation study by Kennereley et al.’. The
review of Janata and Grafton®® suggested that the cerebel-
lum, SMA, premotor cortex, basal ganglia and parietal
cortices are involved in timing aspects of both perceptual
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and motor tasks. They pointed out that these areas might
be playing an important role in perception—action cycle.

Learning: We pointed out earlier, the various aspects of
sequence learning, namely learning modes, learning stages
and learning strategies. Curran™ described distinct brain
areas involved in the implicit and explicit modes of se-
quence learning. He suggested involvement of striatum in
the implicit learning mode and the medial, temporal and
diencephalic brain regions during the explicit learning
mode. Squire and Zola® also reported similar findings
during implicit and explicit memory-related tasks.

Studies by Jupetner er al.’®*" have shown that as learning
progressed from controlled (new learning) stage to automatic
stage in a finger movement learning task, brain activation
shifted from the anterior to the posterior parts both in the
neocortex and the sub-cortical structures. Sakai er al.*®
demonstrated transition of brain activity from the frontal
regions (pre-SMA and dorsolateral prefrontal cortex) to the
parietal regions (precuneus and lateral parietal cortex) as
learning advanced from early to non-early (intermediate
and late) stages respectively. Our behavioural’” and functional
magnetic resonance imaging experiments investigated
different aspects of procedural memory such as represen-
tation®®, complexity® and learning mode*. We proposed
possible cortical localization of various modules and
mappings that subjects use while practising a set of finger
movements in response to visual stimuli. In early stages
of learning this task, subjects may follow a long route in
which the response is mediated by a visuo-spatial mapping
followed by a spatial-motor mapping. In the late stages of
learning this task, subjects may follow a shorter route,
where they utilize a direct visuo-motor mapping. Further,
we hypothesized that there are two sequence representations,
effector-independent in visual/spatial coordinates and ef-
fector-dependent representation in motor coordinates.
Possible neural bases for the effector-independent se-
quence representation may be in the parietal-prefrontal
network and effector-dependent representation may be in
the SMA-primary motor cortical network. Basal ganglia
structures may also be differentially involved in supporting
different representations and the premotor cortex may
mediate various mappings® ~>*!.

Doya®* suggested that the cerebellum, basal ganglia, and
cerebral cortex are specialized for different strategies of
learning, namely supervised learning, reinforcement
learning and unsupervised learning respectively.

Perception: In a recent investigation, Pasupathy and
Miller” demonstrated that the learning-related activity in
prefrontal cortex and striatum showed different time courses
during associative learning. Their results on monkeys sug-
gested that the striatum generates quick predictions about
the behavioural choice and the prefrontal cortex reveals
the slower accumulation of the correct answer.
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Theoretical framework and computational modelling

So far, we had highlighted the cognitive neuroscience
perspective of serial order in cognition. In this section a
discussion is presented on how computational neuroscience
efforts can be directed towards theoretical investigation of
serial order. In the literature, several researchers described
computational models for serial learning. These models
can be broadly classified into three categories — biologically
inspired models, connectionist models, and hybrid models.
In biologically inspired computational models, some aspects
of anatomical organization and function are mimicked***’.
In connectionist models, the aim is to mimic the overall
behaviour of the biological system rather than replicating
the internal organizational details*®. In hybrid models,
engineering principles enable the construction of models
that illuminate biological function. These models usually do
not attempt an explicit replication of anatomical organiza-
tion*"*®,

In order to illustrate the typical activity taken up under
the enterprise of computational modelling, we present here
a theoretical framework for modelling sequence processing
focusing on the organizational aspects. The framework
we propose here falls under the third category, i.e. hybrid
computational model. We propose a two-level model where
Markov models and reinforcement learning are combined to
specifically address how biological systems learn to organize
sequential information in a hierarchical fashion.

Curran® summarized results from the implicit learning
studies and concluded that in sequence learning tasks, basal
ganglia systems may enable extraction of first-order sequen-
tial dependencies and that cortical-basal ganglia loops
may be responsible for learning higher order structures.
Based on this empirical evidence we propose a two-level
model where at the lower level, first-order sequential depend-
encies are extracted and at the higher level, hierarchical
structure corresponding to the entire sequence is captured
using reinforcement learning.

First-order Markov model

Markov model is a well-formulated mathematical framework
for capturing first and higher order sequential dependen-
cies among random variables describing the behaviour of
a system. The main assumption (also called Markov
assumption) is that prediction of the next state depends
only on a portion of the previous history of state transi-
tions. In the case of first-order Markov models, the prob-
ability that g, (state at time ?) is equal to i is completely
predictable by knowing ¢, ; and ignoring the rest of the
previous state history (a second-order Markov model
would require g, and g, , to predict g,). A formal defini-
tion of the first-order Markov model is given below.

Plgi=ilg =], qa=k, ..)=Plg =ilge =)
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Reinforcement learning

Reinforcement learning (RL) has been proposed as a bio-
logically realistic framework for learning sequential deci-
sions in animals and humans®. In this paradigm, the
sequential decision problem involves assuming a policy (a
mapping from the states to possible actions) and learning
a value function over the state space, so that the sequence
of actions maximizes the expected future reward. The most
popular method for learning the value function is the
method of temporal difference (TD). A formal definition is
given below.

VO =E[r(t+ D) +r(t+2)+L 1],
=r+ Ve -V(ir-1),

where V(7) represents the value of a state, #(¢) is the reward
and 3(¢) is the temporal difference signal all at time ¢. E[.]
represents the expectation or averaging operator. Value of
a state, V(7), is set to be the average future reward that is likely
to be obtained in the current state. Temporal difference signal,
&(1), tracks the difference between the expected reward and
actual reward and serves as the reinforcement learning
(internal feedback) signal.

First-order Markov models alone would capture a flat
organization of the sequence and do not incorporate
learning. Although RL models incorporate learning, the
policies that are learned would still have a flat organization.
We propose that by combining these two models and util-
izing the TD error signal, hierarchical policies could be
learned. Computer modelling (simulation) of the two-
level architecture (Figure 4) combining Markov models
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Figure 4. Block diagram of the proposed hybrid model. Actor—critic
based model incorporating Markov model and hierarchical policy as
sub-modules in the actor module. The two levels in the actor module,
namely the Markov model and the hierarchical policy module would
enable learning hierarchical sequence decision problems.
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and RL is expected to reveal whether models based on this
framework can really solve the hierarchical sequence decision
problems. Such models would mimic the hierarchical nature
of organization of sequences as observed in biological
systems, without an explicit replication of the anatomical
organization within.

As already pointed out earlier, a unified framework for
addressing various aspects of serial order has not been at-
tempted either for designing cognitive neuroscience experi-
ments or for constructing computational models. This still
remains an open problem.

Conclusion and future work

Sequencing is an essential aspect of animal and human
behaviour. An introduction to serial order, an essential
aspect of human behaviour, is given. A brief summary of
various aspects of serial order is presented here. The issues
discussed are the origin, representation schemes, organization,
order, timing, learning and perception. Brain areas related
to sequencing are summarized and our own empirical efforts
in this direction are also described. A theoretical framework
combining the mathematical ideas of Markov models and
RL is proposed as an example for computational modelling
of hierarchical sequences. There is an urgent need to formu-
late unified framework for investigation of serial order
from cognitive neuroscience and computational neurosci-
ence perspectives.

There is also an immediate need to facilitate a bridge
between the cognitive and computational neuroscience
streams. Figure 5 depicts an integration of the efforts in-
volved in understanding serial order or sequencing. There
are two main efforts in this direction — one is experimen-
tation (cognitive neuroscience) and the other is building
theoretical framework and undertaking computational
modelling work (computational neuroscience). The former

Understanding
serial order/sequencing

Example: Music, planning, language,
problem solving

Functional
understanding

Behavioural and
neural correlates

l Theoretical framework/
Behavioural and computational
imaging experiments modelling

Figure 5. Block diagram depicting scientific endeavour. Relationship
between experimentation (cognitive neuroscience) and modelling (com-
putational neuroscience) is emphasized in promoting holistic under-
standing of serial order.
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effort enables understanding of the behavioural and neural
correlates of sequencing. The latter effort engenders func-
tional understanding. It is difficult, if not impossible, to
gain the complete functional understanding of a cognitive
phenomenon by a pure empirical approach. Similarly, a
pure theoretical or modelling approach will run the risk
of lacking the biological realism and relevance. Hence, the
empirical and modelling efforts are of utmost importance
and they reinforce each other. The other point emphasized
here is that these efforts must go hand-in-hand. The mod-
elling exercise may also spawn further predictions to be
experimentally verified in future. Although the current ar-
ticle has focused on sequence learning, the proposed inte-
gration would serve as an indispensable model for organizing
scientific endeavours toward understanding any cognitive
phenomenon.
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