analysis of spherules described above. On the other hand, moon rocks are rich in Ti. Detailed work to establish the chemical nature of the material recovered from Barmer basin is now in progress.

ACKNOWLEDGEMENTS. S.C.M. acknowledge DST, New Delhi for financial support. A.T. acknowledges CSIR, New Delhi for Research Associateship. We are grateful to Prof. H. C. Verma, IIT Kanpur for Mössbauer analysis and Dr B. L. Ahuja, Mohan Lal Sukhadia University, Udaipur for support in XRF and XRD studies. R.P.T. and A.T. are grateful to Dr J. K. Sharma, Department of Physics and M.S. Sisodia, B. S. Palival, Department of Geology, JNV University, Jodhpur, for help during this work. We also acknowledge the reviewer for valuable suggestions.

Received 12 April 2005; revised accepted 11 July 2005

Biosafety concerns on the use of *Photobudus luminescens* as biopesticide: experimental evidence of mortality in egg parasitoid Trichogramma spp.

Sharad Mohan*1 and Naved Sabir2

1Division of Nematology, Indian Agricultural Research Institute, and
2National Centre for Integrated Pest Management, IARI Campus,
New Delhi 110 012, India

Photobudus luminescens, a symbiotic bacterium associated with the entomopathogenic nematode *Heterorhabditis indica*, has recently been shown to exhibit biopesticidal potential against important pests, independent of its host nematode. The bio-ecological compatibility of the bacterium was tested in vitro, against two species of the common biocontrol agent *Trichogramma* in their hyperparasitized form inside the host eggs of the rice grain moth, *Coreyra cephalonica*. In 65% of the eggs exposed to *P. luminescens* cells alone or their toxins, the *Coreyra* egg-shells became flaccid and there was significant reduction of up to 84% in the emergence of *Trichogramma* adults. The possible access of bacterial cells or their secreted toxins to the *Trichogramma* embryo sheltered inside the *Coreyra* eggshell is discussed. The nematode *H. indica* carrying the bacterium within its gut had no effect on the emergence. The results point to the bio-ecological hazards of indiscriminate use of *P. luminescens* as a biopesticide. Due to its wide host range, the inclusion of *P. luminescens* in any integrated pest management programme would be suspect, until proven safe for natural enemies and non-target organisms.

Keywords: Biopesticide, biosecurity, *Heterorhabditis indica*, *Photobudus luminescens*, Trichogramma.

The motile Gram-negative bacterium *Photobudus luminescens* Thomas & Poinar (Enterobacteriaceae) found in symbiotic association with the entomopathogenic nematode

For correspondence. (e-mail: srivastavasharad@yahoo.com)
Heterorhabditis spp. (Nematoda: Heterorhabditidae) is a potent insect pathogen. Recently, successful laboratory and field evaluations proved the insecticidal virulence of the bacterium when applied alone as a biopesticide, independent of its nematode symbiont, against the cabbage white butterfly, Pieris brassicae (L.), mango mealy bug, Drosophila mangiferae (Green), and the pupae of the diamondback moth, Plutella xylostella (L.). The bacterium is reported to be non-toxic to humans and mammals and differs genetically from the human clinical isolate P. asymbiota (Fischer-Le Saux). Studies on the insecticidal-complex produced by this bacterium have revealed that several extracellular macromolecules such as proteases, lipases, broad-spectrum antibiotics confer the insecticidal ability. The insecticidal toxin proteins secreted by Photorhabdus during its growth, into the culture medium, have been purified and their genes cloned. In the wake of such advances, P. luminiscens or its formulations are being considered as potential inputs in pest management strategies. However, the wide-ranging entomopathogenicity gives rise to doubts regarding their ecological safety against beneficial/non-target fauna in general, and insects in particular.

Trichogramma Ashmead (Hymenoptera: Trichogrammatidae) wasps are the most widely used natural enemies of insect eggs. They occur naturally in nearly every terrestrial habitat and cause efficient destruction of the eggs of over 200 insect species through hyperparasitization. Trichogramma are successful components of many an integrated pest management (IPM) programme, where they are used as ‘Trichocards’ (hyperparasitized eggs of Corcyra cephalonica Stainton [Lepidoptera: Pyralidae] by Trichogramma pasted on small paper strips). However, they exhibit variable sensitivity to the broad spectrum insecticides and biopesticides commonly in use; parathion wafting from treated cotton fields was found to kill Trichogramma adults up to a mile away, whereas the application of Bacillus thuringiensis Berliner (Bt) insecticide had no impact on adult emergence or survival.

The entomopathogenic attributes of P. luminiscens qualify it equally as a potential biopesticide against insect pests. However, due to lack of information on its bio-ecological safety, it was important to investigate the toxicity of Photorhabdus to Trichogramma parasitized insect eggs, in case both were to be recommended simultaneously in any IPM programme. Therefore, an in vitro trial was conducted for testing the ecological compatibility of P. luminiscens cells alone or their secreted toxins against the hatching of the two species of the commercially recommended biological control agent, viz. T. chilonis (Ishii) and T. japonicum (Ashmead) on the hyperparasitized eggs of the stored grain moth, C. cephalonica.

P. luminiscens isolated from Heterorhabditis indica (IARI strain) was used in these studies. Cultures were grown overnight on nutrient broth at 28°C to obtain a concentration of 10^5 colony forming units (CFU) per ml. The bacterial suspension was pelleted by centrifuging at 15,000 g at 4°C and the pellets were re-suspended in sterile water yielding approximately 1 x 10^7 cells per ml. The supernatant was passed through a 0.22 µm filter under aseptic conditions. Cardboard strips carrying C. cephalonica eggs freshly parasitized by T. chilonis and T. japonicum were obtained from the National Centre for Integrated Pest Management (NCIPM), New Delhi. Whatman No. 1 filter paper was cut into 3 cm² size and placed at the centre of 2” plastic petri plates and moistened with 100 µl sterile water. Strips carrying the parasitized eggs of either of the two Trichogramma species were cut into 1 cm² size, each carrying approximately a hundred parasitized eggs, and were placed on the moist filter paper. Each strip was individually exposed to the following treatments:

T1. Egg strips with only moist filter paper base and no treatment.
T2. Freshly emerged H. indica infective juveniles @1000 II/50 µl sterile water.
T3. Nutrient broth @ 50 µl.
T4. P. luminiscens cells (PC) alone in 50 µl sterile water (from 1 x 10^7 cells/ml stock).
T5. P. luminiscens supernatant (PS) @ 50 µl.
T6. Sterile water @ 50 µl.

The petri plates were sealed with parafilm to prevent the escape of the emerging adult wasps. Each treatment was replicated four times and incubated in a BOD incubator maintained at 28°C. A progressive and cumulative count of adult emergence was made daily up to four days. Prior to counting, the petri plates were exposed to 4°C for 3–4 min, which immobilized the adult wasps and facilitated easy counting. Observations on egg distortion were taken under a stereo-microscope. The per cent distortion of eggs refers to the mean per cent of eggs exhibiting distortion in the four replicates. The distortion was observed in the form of protrusion of the red-eyeballs of the Trichogramma embryo through the partially dissolved Corcyra egg-shell (Figure 1c). Observations on per cent hatching and egg distortion were transformed using arcsine transformation and subjected to repeated measurement analysis using SAS software version 8.1. Treatments were compared for their statistical parity and coded accordingly, as shown in Tables 1 and 2.

The secreted toxins of P. luminiscens (PS) had an adverse effect on the emergence of the adult wasps of both Trichogramma species, which was statistically at par with the bacterial cells alone (PC). The mean per cent emergence of T. chilonis and T. japonicum was 6 and 8.25 respectively, for PS-treated eggs, and 13 and 16.25 respectively, for PC-treated eggs after four days of exposure (Table 1 and Figure 2). This indicates that both the treatments resulted in more than 84% mortality of the Trichogramma embryo sheltered in the C. cephalonica egg-shell.
Interestingly, the PC and PS treatments caused flaccidity in the Corcyra egg-shell, which collapsed around the Trichogramma embryo inside, while the unparasitized eggs were completely degenerated (Figure 1a). The eggs remained unaffected and maintained their integrity in other treatments where the adult wasps emerged through a neatly cut hole (Figure 1b). The infected eggs exhibited a peculiar characteristic where the eyes of the un-emerged Trichogramma adults were seen protruding out of the partially dissolved egg-shell (Figure 1c). The percentage of such eggs was more in PS-treated eggs (65.5 in T. chilonis and 48.75 in T. japonicum), suggesting the activity of chitinase (Table 2).

The emergence of healthy adults was observed in the remaining treatments over a period of four days in both the species (Figure 2a). A significantly suppressed emergence for the first couple of days was observed in T. chilonis treated with the nematode H. indica. However, no nematode developmental stage or bacterial colony was isolated from the parasitized eggs, negating the role of the nematode towards pathogenicity.

It is speculated that the secreted toxins or the motile bacterial cells could have accessed the Trichogramma embryo as follows:

(i) Entry could possibly have been through the micropyles present at the anterior pole of the Corcyra eggs. Four or more micropyles are known to exist on the lepidopteran eggshell along with several minute aeropyle, which enable continuity between the external and the internal environment10.
(ii) Parasitism by Trichogramma also weakens the egg shell as the female drills a hole through the chorion to insert its eggs, which could act as another passage for the bacterial cells or toxins.

Figure 1. a. Hyperparasitized eggs of Corcyra cephalonica by Trichogramma chilonis treated with Photorhabdus luminescens showing flaccidity of egg-shells Arrow shows completely degenerated unparasitized eggs. b. Untreated eggs of C. cephalonica showing neatly cut hole by adult Trichogramma wasps for emergence. c. Eyes of unemerged dead T. chilonis adults seen protruding out of the partially dissolved Corcyra egg-shell treated with P. luminescens.

Figure 2. Per cent emergence of T. chilonis (a) and T. japonicum (b) as affected by different treatments of P. luminescens.
Table 1. Effect of different treatments on per cent emergence of *Trichogramma chilonis* (Tc) and *Trichogramma japonicum* (Tj) from parasitized eggs of *Corycya cephalonica*

<table>
<thead>
<tr>
<th></th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tc</td>
<td>Tj</td>
<td>Tc</td>
<td>Tj</td>
</tr>
<tr>
<td>Control</td>
<td>34.5a</td>
<td>12b</td>
<td>51a</td>
<td>33.75b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>83.5b</td>
<td>50b</td>
</tr>
<tr>
<td>Heterorhabditis indica</td>
<td></td>
<td></td>
<td></td>
<td>90a</td>
</tr>
<tr>
<td>Nutrient broth</td>
<td>12.5c</td>
<td>7.5a</td>
<td>29.75b</td>
<td>29.25b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>85a</td>
<td>45.25b</td>
</tr>
<tr>
<td>Photorhabdus luminescens</td>
<td>32.25c</td>
<td>11.5b</td>
<td>49.25a</td>
<td>35.25b</td>
</tr>
<tr>
<td>cells alone</td>
<td></td>
<td></td>
<td>87.75a</td>
<td>61.25b</td>
</tr>
<tr>
<td>P. luminescens</td>
<td>0.25c</td>
<td>0b</td>
<td>14.25b</td>
<td>15.75a</td>
</tr>
<tr>
<td>culture filtrate</td>
<td></td>
<td></td>
<td>12.25a</td>
<td>10.75b</td>
</tr>
<tr>
<td>Water</td>
<td>39c</td>
<td>10.5b</td>
<td>32.5a</td>
<td>8.25b</td>
</tr>
</tbody>
</table>

Values indicate mean hatch (%) based on progressive repeated observations; Number of replications = 4; Treatments with the same letter code are not significant (at 5%) within the same column.

Table 2. Effect of different treatments on per cent distortion of *T. chilonis* (Tc) and *T. japonicum* (Tj) from parasitized eggs of *C. cephalonica*

<table>
<thead>
<tr>
<th></th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tc</td>
<td>Tj</td>
<td>Tc</td>
<td>Tj</td>
</tr>
<tr>
<td>Control</td>
<td>0a</td>
<td>0a</td>
<td>0a</td>
<td>0a</td>
</tr>
<tr>
<td>H. indica</td>
<td>0b</td>
<td>0b</td>
<td>0b</td>
<td>0b</td>
</tr>
<tr>
<td>Nutrient broth</td>
<td>0b</td>
<td>0b</td>
<td>0b</td>
<td>0b</td>
</tr>
<tr>
<td>P. luminescens</td>
<td>18.25b</td>
<td>10b</td>
<td>15.5b</td>
<td>31.25b</td>
</tr>
<tr>
<td>cells alone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. luminescens</td>
<td>23b</td>
<td>13.25b</td>
<td>21.25b</td>
<td>35.75b</td>
</tr>
<tr>
<td>culture filtrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>0a</td>
<td>0b</td>
<td>0a</td>
<td>0a</td>
</tr>
</tbody>
</table>

Values indicate mean number of eggs distorted (%) based on progressive repeated observations; Number of replications = 4; Treatments with the same letter code are not significant (at 5%) within the same column.

(iii) The host yolk that oozes out of the oviposition hole due to the internal pressure, could be a direct source of nutrient for the bacterial cells to grow and subsequently pervade the internal environment. The recovery of viable bacterial colonies from the infected eggs on nutrient agar plates suggests the activity of the *Photorhabdus* cells.

The mortality to the *Trichogramma* embryo could be due to the direct action of enzymatic secretions of the bacteria. The activity of lipase, protease and chitinase is already established, and either or both could be responsible for the dissolution and weakening of the *Corycya* egg-shell chitin (Figure 1a, c). Subsequently, the *Trichogramma* embryo, whose embryonic membranes contain lipids and proteins, could easily have been digested by the bacterial metabolites. The activity of toxins on the *Corycya* yolk surrounding the *Trichogramma* embryo could also have resulted in the loss of gaseous exchange vital for the growth of the embryo. A possibility of physiological alteration in the molecular cues, affecting the physiology of development and/or hatching, cannot be ruled out. Some directions to further investigations can be drawn from these findings, to prove the mode of action of the bacteria.

This study brings to the fore, the concerns of biosafety in connection with the use of *P. luminescens* as a biocide. The virulence exhibited by *P. luminescens* towards a beneficial insect point to the possible ecological perils of the indiscriminate application of *P. luminescens* as a broad-spectrum biopesticide.

ACKNOWLEDGEMENTS. We thank Dr H. S. Gaur, Head, Division of Nematology, IARI, for critical suggestions and technical guidance. We thank Prof. Amerika Singh, Director, NCIPM, New Delhi for encouragement; Dr A. Dhandapani, NCIPM, for the statistical analysis of the data, and Drs R. R. Tanwar and Surender Kumar, NCIPM, for providing the 'Trichocards'. We also thank Dr B. Subrahmanya, Division of Entomology, IARI, for invaluable suggestions.

Received 7 March 2005; revised accepted 2 June 2005