An M 5.2 earthquake occurs in Koyna region after 4½ years

Koyna, located near the west coast of India, is known to be the most significant site of artificial water reservoir triggered earthquakes. The activity started soon after the filling in of the reservoir in 1961 and during the last 44 years, an earthquake of M 6.3, 19 earthquakes of M ≥ 5, about 170 M ≥ 4 earthquakes, and several thousand smaller earthquakes have occurred. As far as M ≥ 5 earthquakes are concerned, the site had been quiet for some time, the last earthquake of M ≥ 5 having occurred on 5 September 2000.

In a detailed investigation, Gupta et al. speculated as to how long triggered earthquakes would continue at Koyna. They concluded that a maximum credible earthquake for the region is M 6.8. So far, about one-half of the energy of an M 6.8 earthquake has been released. Considering that the region got activated soon after filling of the Koyna dam in 1961, the activity should continue for another 3-4 decades. However, there was no large enough intact fault segment left to cause an earthquake of M 6 like the one on 10 December 1967. At the same time, smaller earthquakes will continue to occur, governed by Kaiser effect, rate of loading, and duration of retention of high water levels. In another study, Gupta pointed out that most of the earthquakes of magnitude 4 or larger have occurred in Koyna region following the high rate of loading soon after the monsoon months – September to December. Another peak of activity occurred during the unloading stage of the reservoir during the months of February–March. The current seismic activity of M 5.2 on 14 March, and two earthquakes of M > 4 on 15 and 26 March occurred during the unloading period (Figure 1). The epicentral location of earthquakes of M ≥ 5 in the Koyna–Warna region is shown in Figure 2. Figure 3a shows the distribution of earthquakes of M ≥ 3 since January 2003, and water levels in the reservoir. It may be noted in Figure 3a that the enhanced activity during the month of March 2003 was associated with unloading of reservoir, and the same is the case with the enhanced activity in the month of March 2005 where there are several earthquakes of M ≥ 3, two earthquakes of M ≥ 4, and one earthquake of M ≥ 5. It is in line with the earlier picture where it was noted that maximum number of earthquakes of M ≥ 4 occurred in the month of September due to rapid loading of the reservoir, and another peak occurred in the month of February following unloading of the reservoir (Figure 3b after Gupta).

Another interesting thing to note is that most earthquakes exceeding M 5, which occur in the unloading phase, are close to the Warna reservoir. For example, nos: 17 and 18 in Figure 2 and the March 2005
earthquake of $M \geq 5$. The current seismic activity in the Koyna region is a continuation of the triggered earthquakes, and has nothing to do with the Sumatra earthquake as reported in the news media. The current seismic activity is also related with the unloading of the reservoir.

Received 5 April 2005; revised accepted 7 April 2005

H. V. S. SATYANARAYANA
D. SHASHIDHAR
T. SAGARA RAO
M. KOUSALYA*

National Geophysical Research Institute,
Hyderabad 500 007, India
*For correspondence.
e-mail: kousalyan@ngri.res.in