namely Br Assica oleracea, B. juncea, B. napus, Oryza sativa, Gosypium sp., Zea mays, Cicer arietinum, Glycine max and Nicotiana tabacum have been imported for research purposes in the country and all major precautions have been taken before their import so that there is no chance of gene contamination'.

Sudhir K. Sopory (ICGEB), gave a presentation on ‘Genetically modified plants for salinity stress tolerance’. He emphasized that novel stress responsive genes and transgenic research offer an important strategy to develop salt-tolerant plants. Citing the example of Pennisetum as a model system to study stress tolerance, he said that by manipulating the expression of genes of the glyoxalase pathway, glyoxalase I and glyoxalase II together, the ability of double transgenic plants to salinity stress is greatly enhanced compared to the single transgenic plants harbouring either glyoxalase I or glyoxalase II. Aklheesh K. Tyagi and Jitender Khurana (Department of Plant Molecular Biology, University of Delhi, South Campus), dealt with new technologies and work that is being carried out in their laboratories. Tyagi shared his views on the rice genome. He said that release of the genome sequence from two subspecies of Oryza sativa has brought rice to the forefront of genomic studies. Development of plants for traits like enhanced yield or resistance to various stresses (biotic or abiotic) requires a thorough understanding of the cellular and functional aspects of plant, which is dictated by its genetic make-up. In conclusion, Tyagi noted that transgenics in rice would revolutionize Indian agriculture in near future. Khurana elaborated on the role of light signalling pigments in plants. According to him, ‘manipulating light signalling components for controlling agronomically important traits like flowering time and plant height will help in producing novel crop species. Understanding light perception and signalling mechanisms is not only important from the fundamental point of view, it offers the potential to alter these pathways through breeding and transgenic manipulation towards creation of crop varieties to meet the demands of modern cultivation’. Some of the traits like early flowering, altered plant height, and better performance under stress conditions have already been manipulated by genetic engineering. V. Siva Reddy (ICGEB), focused on the potential that chloroplastic genetic engineering offers in the area of crop biotechnology. Chloroplastic genetic engineering helps in containment of foreign gene spread to untransformed wild relatives, because in majority of plants the plastome is maternally inherited and foreign gene integrated into plastid genome has less chance to migrate through pollen, thus ruling out the possibility of gene flow. He added that since chloroplasts are the seat of several metabolic pathways in plants, genetic modifications in these offer greater potential in further improvement of traits in crop plants.

Addressing the problem of allergenicity posed by transgenic crops and genetically modified foods, A. B. Singh (Institute of Genomics and Integrative Biology, Delhi) talked on ‘Transgenic plants and allergenicity: Health risk assessment’. The potential allergenicity of the introduced proteins can be evaluated by focusing on the source of the gene, sequence homology of the introduced protein to known allergens and the reactivity of the novel proteins with immunoglobulin (IgE). Application of such criteria provides reasonable assurance that the crop will not be allergenic. Singh stressed on the setting up of state-of-the-art laboratories to test the allergenicity caused by GMOs and their products on either animals or human health.

‘The credibility of the regulatory process and acceptance of products of biotechnology depend heavily on the public’s ability to understand the process and the key scientific principles on which it is based’, was the opening statement made by P. K. Gupta (Department of Genetics and Plant Breeding, CCS University, Meerut) in his talk on ‘Biosafety and IPR issues in GM crops’. Gupta elaborated on the techniques that are available for evaluating and combating the risks posed by GM crops. He added that two international instruments have recently changed the situation with respect to trading of GMOs; Cartagena Protocol for Biosafety (effective from 11 September 2004; ratified by 111 countries on 3 December 2004) and a set of guidelines, ‘Risk Analysis Principles for Food Derived from Biotechnology’ established by a little known body called ‘Codex Alimentarius Commission’ (established by FAO and WHO in 1963). GMOs are either marker-free or utilize markers that are consumer-friendly.

Manoranjan Hota (Ministry of Environment and Forests, Government of India) discussed the role of his Ministry in strengthening the capacity to implement the Cartagena Protocol in India, the first international regulatory framework for safe transfer, handling and use of living modified organisms. In his presentation on, ‘Cartagena Protocol on biosafety and capacity building in India’, Hota said that the protocol seeks to protect biological diversity from the potential risks posed by living modified organisms resulting from modern biotechnology and stressed on the need to educate more people and make farmers aware of transgenic technology and its uses.

In the concluding session, A. K. Bhatnagar (Department of Botany, University of Delhi, member GEAC and Convener) said that there is wide consensus that transgenic crops should be evaluated on a case-by-case basis, as is the case with pharmaceuticals, taking into consideration the specific crop, trait and agro-ecological system. Since few transgenic crops have been evaluated for their ecological impacts in tropical regions, a major research effort is required in this area. Concerted efforts are needed to educate and make people aware of the technology, which has already gained access.

Monika Koul Moza (S. Ramaseshan Fellow), 516-B, MIG Flats, East of Loni Road, Delhi 110 093, India e-mail: monikabot@rediffmail.com

DRDO research grants

A website has been created by DRDO for applying for research grant under DRDO’s Extramural Research Program (ER). The details are given below:

The principal investigators (PI) can go to the site http://www.drdo.org.in/ and search for the icon named ‘sponsored research in academic institutions’. After clicking the icon, one will see the icon by name ‘Extramural Research’ through which the forms and conditions can be downloaded. The form can be filled online with aided instructions and converted into a PDF file which can be transmitted to the Directorate of Extramural Research & Intellectual Property Rights.