In vitro adventitive embryony in Citrus: A technique for Citrus germplasm exchange

Ramkrishna N. Khawale and Sanjay K. Singh
Division of Fruits and Horticultural Technology, Indian Agricultural Research Institute, New Delhi 110 012, India

Seeds of Citrus spp. are moderately recalcitrant and lose viability within a short time. Furthermore, movement of bud wood is restricted for germplasm exchange because it is the potent source of invasive microorganisms, which have already destroyed several citrus-growing regions of the world. In this communication we report the protocol for storage and regeneration of plantlets of Citrus reticulata Blanco and Citrus jamhiri Lush from the cotyledonal segments. Murashige and Skoog basal medium fortified with 2.0 mg l⁻¹ BAP + 0.5 mg l⁻¹ kinetin + 1.0 mg l⁻¹ NAA, gave the highest frequency of adventitious embryony. The regenerated plantlets were hardened and tested for clonal fidelity or variation using (RAPD) markers. The results showed that plantlets regenerated through this pathway are found to be true-to-the-type. It is proposed that the technique developed may be effectively used for the citrus germplasm exchange.

MORE stringent restrictions on the import of biotic materials could curb the rate of biotic invasions, and reduce their rates of spread. Invasive species threaten native biodiversity, agricultural and other production systems. Germplasm diversity for any crop must be protected from loss to ensure its availability for future plant improvement. Germplasm is valuable because it contains the diversity of genotypes needed to develop new and improved lines. Among the fruit crops, the genus Citrus and its relatives are horticulturally important. In Citrus, most of the collections are conserved in field gene banks in different citrus-growing countries. Such collections are vulnerable to biotic and abiotic hazards. For germplasm exchange, bud-wood and seeds are the most preferred tissues. However, infected bud-wood used for germplasm exchange has unknowingly led to the spread of fungal, bacterial and viral diseases from one region to another within the country or even among continents, which threaten the species and regional biodiversity. The real problem is detected only when the disease takes an epidemic form. Hence, many countries have restrictions on the import of bud-wood because of the hazards of introducing new and virulent diseases; and it is restricted only through seeds. However, when the seed is used as a genetic material for germplasm exchange, desiccation and germinability loss during storage and transfer are the main problems. Viral diseases are rarely seed-transmitted.

Furthermore, there is no evidence of the vertical transmission of fungal community through seeds, as seen in grasses. Keeping in mind the problems associated with germplasm exchange and the threats of invasion of microorganisms to the plant species and its regional biodiversity, we propose a protocol for the regeneration of citrus from the cotyledonal explant excised from mature-stored seeds. This protocol may be effectively used for germplasm exchange.

Seeds were extracted from mature fruits of Citrus reticulata Blanco and Citrus jamhiri Lush and washed in running tap water. The seeds were then agitated in 0.75% sodium hypochlorite (v/v) for 15 min. They were then washed in tap water followed by air-drying up to 12−15 h under shade. Before storage, the seeds were treated with carbendazim (1.0 g/kg) and packed in polythene bag (200 g) and stored at 4°C for six months.

After six months, the seeds were washed in running tap water for 30 min. Thereafter, the outer and inner seed coats were removed and surface sterilized using 0.75% sodium hypochlorite solution (v/v) with 0.1% Tween 20 for 10 min followed by rinsing five times with sterile distilled water. Zygotic and nucellar embryos were removed aseptically and cotyledons separated out with minimum damage. The cotyledons were then cultured on Murashige and Skoog (MS) basal medium fortified with different growth regulator combinations such as: (i) 1.0 mg l⁻¹ 6-benzylaminopurine (BAP) + 0.5 mg l⁻¹ 6-furfurylaminopurine (kinetin) + 0.5 mg l⁻¹ α-naphthalene acetic acid (NAA); (ii) 2.0 mg l⁻¹ BAP + 0.5 mg l⁻¹ kinetin + 0.5 mg l⁻¹ NAA; (iii) 1.0 mg l⁻¹ BAP + 1.0 mg l⁻¹ kinetin + 0.5 mg l⁻¹ NAA; (iv) 2.0 mg l⁻¹ BAP + 0.5 mg l⁻¹ kinetin + 1.0 mg l⁻¹ NAA; (v) 2.0 mg l⁻¹ BAP + 1.0 mg l⁻¹ kinetin + 1.0 mg l⁻¹ NAA, supplemented with 3% sucrose and solidified with 0.8% agar-agar. Before autoclaving (121°C for 15 min), the pH of the medium was adjusted to 5.7 and 25 ml aliquot was distributed in 25 × 150 mm culture tubes. Two cotyledons per tube were inoculated. All the cultures were maintained in culture room (26 ± 2°C) under complete darkness up to maturation. During maturation, the explants were transferred to 16/8 h light/dark regime (45 μmol m⁻² s⁻¹). Enlarging adventitious embryos (1−2 cm length) were transferred to the rooting medium containing MS salt fortified with 2.0 mg l⁻¹ IBA and 100 mg l⁻¹ AC. In vitro hardening method was used as described by Singh et al.

DNA was extracted from randomly selected plants using the method described by Cenis. Amplification of DNA was performed in Biometra® thermocycler, programmed for initial denaturation at 94°C for 4 min. In each cycle, denaturation for 1 min at 94°C, annealing for 2 min at 32°C and extension for 2 min at 72°C was performed with final after 40 cycles for 7 min. The RAPD mixture contained 25−30 ng template DNA in 25 μl reaction volume with 2.5 μl of reaction buffer having 15 mM MgCl₂, 250 μM dNTPs, 1 unit of Taq DNA polymerase and 30 ng primer. Amplified DNA fragments were separated on 1.2% agarose gel and stained with ethidium bromide.

*For correspondence. (e-mail: singhsr@iari.res.in)
We noted *in vitro* adventitve embryony on the cotyle-
donian explant of six-month-old stored seeds of citrus, viz.
Nagpur mandarin (*C. reticulata* Blanco) and Rough lemon
(*C. jambhiri* Lush.). When cotyledon segments were cultured
on the regeneration medium containing MS basal medium
fortified with 2.0 mg l\(^{-1}\) BAP + 0.5 mg l\(^{-1}\) kinetin and
1.0 mg l\(^{-1}\) NAA, the frequency of adventitve embryony
was recorded higher in Rough lemon (28.7 embryos/explant)
than the Nagpur mandarin (24.3 embryos/explant).
Adventitve embryony was observed when the cultures were
maintained initially under complete darkness; however,
cultures kept in light or in different light/dark regimes did
not show any response. Days taken for adventitve embryo
induction ranged from 40.5 to 50.8 (Figure 1). Each advent-
itve embryo (1–2 cm length) was excised from the cotyle-
don explant and transferred onto MS basal medium
fortified with 2.0 mg l\(^{-1}\) indole-3-butyric acid (IBA) and
100 mg l\(^{-1}\) AC. However, when initial cultures were kept
for longer periods (up to 60–80 days) on the same regenera-
tion medium, adventitve embryos grew as elongated shoots.
After rooting, the plantlets were *in vitro* hardened on sterile
peat:sand:soilrite (1:1) filled in a glass jar fitted with poly-
propylene cap, prior to their *ex vitro* transfer\(^{14}\). Two-week-
old hardened plantlets were transferred to the greenhouse
for further acclimatization. Genetic fidelity was estimated
in the regenerants by using five decamer RAPD primers.
Result indicates the plantlets regenerated through this
pathway are true-to-the-type. Figure 2 shows the RAPD
profile amplification with 5'-GAAACGGGTG-3' primer
in Nagpur mandarin. The different stages of adventitve
embryony from cotyledon explant of stored seed of Nagpur
mandarin are shown in Figure 3 a–c.

Earlier, different regeneration systems were reported in
Citrus using various explants\(^{16–19}\). However, regeneration
of *C. jambhiri* Lush. and *C. reticulata* Blanco from coty-
ledons of stored seeds holds promise as a large number of
plantlets can be produced, since the seeds of *Citrus* species
are moderately recalcitrant\(^{20}\) and cannot be stored convention-
ally in the cold room\(^{7}\). Furthermore, large numbers of

![Figure 1](image1.png)

Figure 1. Effect of growth regulators on *in vitro* adventitve embryony in *Citrus*, (a) Rough lemon and (b) Nagpur mandarin. ■ Days to
embryo induction; (--) No. of adventitve embryos/explant.

![Figure 2](image2.png)

Figure 2. RAPD profile in Nagpur mandarin. Lane M, Lambda DNA
digest with EcoRI/HindIII, lane 1, Mother plant, lanes 2–7, Plants deve-
loped through *in vitro* adventitve embryony from cotyledon segments
of stored seeds.

![Figure 3](image3.png)

Figure 3. Different stages of adventitve embryony from cotyledon
explant of stored seed in Nagpur mandarin. a, Adventitve embryo-
genesis on cotyledonian segment; b, Magnified view of a, and c, Shoot
development.
virus(es) are not found to be transmitted through seeds11; rather almost all the citrus diseases are transmitted through bud-wood. Bud-wood exchange is restricted by many countries due to the hazards of invasion of new and old devastating diseases. This practice ruins the citrus industry in different regions of the world.

The technique developed is novel and can be effectively used for germplasm exchange, especially in those species which are moderately recalcitrant in nature and lose viability in a short time. Furthermore, this protocol with further experiments should be useful in (i) Agrobacterium-mediated genetic transformation; (ii) in vitro germplasm conservation; (iii) study on the nature of adventive polyembryony in Citrus sp. and; (iv) role of growth regulators and other ad- denda on adventive embryony.

The results described here have so far been reproduced three times with the two genotypes.

ACKNOWLEDGEMENTS. We thank Dr. Surinder Kumar and Mr. Surinder Pal for providing the technical help and Head, Division of Fruits and Horticultural Technology, IARI, New Delhi for providing the facilities.

Received 27 July 2004; revised accepted 24 December 2004

Somatic embryogenesis and plant regeneration in Eucalyptus tereticornis Sm.

M. G. Prakash* and K. Gurumurthi
Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, Coimbatore 641 002, India

Somatic embryogenesis and plant regeneration were obtained from cultured mature zygotic embryos of Eucalyptus tereticornis Sm. through callus. MS and B5 basal media containing different concentrations of NAA and 2,4-D were evaluated for callus induction and different BAP concentrations for somatic embryogenesis. The effect of different light conditions on somatic embryogenesis was also studied. Callus induction and somatic embryogenesis was found to be highest on MS medium compared to B5 medium. Highest frequency of friable callus was obtained on MS medium supple-mented with 10.74 μM NAA. When the callus was transferred separately to the respective media on which callus induction occurred, containing various concentra-tions of BAP, somatic embryos developed after 1–2 weeks with highest frequency (54%) in MS medium containing 2.22 μM BAP. The embryos were germinated on MS basal medium. The rooted plants were successfully transferred to polybags after hardening.

Eucalyptus is an economically important multipurpose tree species belonging to the family Myrtaceae. It is widely used for establishing plantations in tropical and subtropical regions of the world. The area under Eucalyptus plantations

*For correspondence. (e-mail: prakash_g_nair@hotmail.com)