for the recorded ground motion. The record of ground motion from a recording station located on the side or bottom of a valley will be influenced by the shape of the valley. These effects have not been considered in the present study.

(iv) The recorded accelerogram is influenced by closeness of the causative fault, its size, pattern of slip distribution, form of source time function, rise time, rupture velocity and model of rupture propagation (unilateral, bilateral, circular, etc.). The size of the fault can be estimated. However, other properties of the source are not known in advance.

(v) As stated earlier the objective of the present study is to determine the usefulness of a method of synthetic seismogram generation proposed herein. The synthetic accelerograms generated in the present study show a satisfactory match with the observed ones in a number of sites, demonstrating the usefulness of the method of synthetic seismogram generation.

ACKNOWLEDGEMENT. We thank the Director, CBRI, Roorkee and Head, Department of Earth Sciences, IIT Roorkee for support.

Received 22 April 2004; revised accepted 16 December 2004

The tsunami of the great Sumatra earthquake of $M_{w} 9.0$ on 26 December 2004 – Impact on the east coast of India

R. K. Chadha, R. Latha, H. Yeh, Curt Peterson and Toshitama Katada

1National Geophysical Research Institute, Hyderabad 500 007, India
2National Institute of Ocean Technology, Chennai 601 302, India
3Department of Civil Engineering, Oregon State University, Corvallis, Oregon 97336–4501, USA
4College of Liberal Arts and Science, Portland State University, Portland, Oregon 97207, USA
5Gunma University 1-5-1, Tenjinecho, Kiryu, Gunma, 376-8515, Japan

An earthquake of magnitude 9.0 occurred off the coast of Sumatra on 26 December 2004 at 00:58:50 (UTC)/06:28:50 AM (IST). The epicentre of the earthquake was located at 3.29°N and 95.94°E. The focal depth of

For correspondence. (e-mail: chadha@ngri.res.in)
the earthquake was 30 km. This earthquake generated huge tsunami waves which devastated the Andaman and Nicobar Islands, east coast of India, south Kerala in India and several other countries like Sri Lanka, Indonesia, Thailand and Somalia in the Indian Ocean. The tsunami claimed more than 250,000 human lives in these countries. The aftershocks of this earthquake, numbering more than 250 in the magnitude range $5 \leq M < 7.3$, were located for a length of 1300 km from Sumatra in the south to the Andaman and Nicobar islands in the north, till 30 January 2005. A tsunami run-up survey was conducted immediately after the event to study tsunami damages, inundation areas and to obtain estimates of tsunami heights from perishable evidences like watermarks on houses and ocean debris transported inland. This communication presents results on tsunami heights at different locations along the coastal areas of Tamil Nadu.

On 26 December 2004, an earthquake of M 9.0 shook the entire east coast of India and Andaman and Nicobar Islands at 06:29 h (IST). Centred off the coast of Sumatra in the Indian Ocean, the earthquake caused extensive damage in the Andaman and Nicobar Island regions of India and was felt strongly all along the east coast of India from Srikakulam in Andhra Pradesh (AP) to Nagapattinam in Tamil Nadu (TN). Some of the houses in the coastal belt of AP developed cracks. The earthquake set-off huge tsunami, which travelled throughout the world oceans, severely affecting several countries in the Indian Ocean. Most severely affected countries in descending order are Indonesia, Thailand, Sri Lanka, India and Somalia. The Nicobar Islands, situated within 500 km from the epicentre of the earthquake were the first to be devastated, followed by the Andaman region of India. The tsunami travelled a distance of more than 2000 km in the Indian Ocean and severely affected the east coast of India from Srikakulam in AP to Kanyakumari in TN. Southern parts of coastal Kerala also suffered severe damage due to wrap-up effects of the tsunami propagation. Figure 1 shows the travel time of the tsunami in the Indian Ocean. It is seen that the east coast of India was affected by the tsunami after more than 2 h of the main earthquake at 06:29 h (IST). Damage to life and property due to the tsunami was most severe from Chennai to south of Nagapattinam along the TN coast, where more than 7800 people died. Wherever the shoreline rises steeply or was protected by mangroves, the damage was less pronounced; but all along the shallow beaches, the damage was severe. This communication presents a joint report by Indian scientists and an international survey team that visited the TN coast immediately after the tsunami, to estimate the run-up heights and inundation areas, and assess the damages.

A field survey was taken up by the National Geophysical Research Institute (NGRI), Hyderabad in AP and TN immediately after the Sumatra earthquake, to study the effects along the east coast of India. Some scientists from NGRI and National Institute of Ocean Technology (NIOT), Chennai joined the international tsunami survey team of Earthquake Engineering Research Institute (EERI), USA from 7 to 11 January 2005. The objective of the survey was to measure tsunami run-up heights, map the inundation areas and assess the damage caused by the tsunami along the TN coast. Run-up heights are the maximum vertical distance reached by tsunami, measured relative to the mean sea level. Estimation of run-up heights was done based on physical evidence like the watermarks or debris carried inland by the tsunami. During the survey, information was also gathered from eyewitnesses and newspapers. This information is subject to errors of the order of few tens of centimetres and generally within 10–15% error of the measured data. The surveys were carried out with a bubble-level transit mounted on a tripod and extendable stadia rod and also a hand-held level, GPS for locations of indicators on maps and at some places based on the location of samples of sediments carried inland.

In AP, 106 people were confirmed dead and seven missing. The most affected districts were Krishna and Prakasam, recording 27 and 35 deaths respectively. Other affected districts were Guntur, Nellore, West Godavari, East Godavari and Visakhapatnam. The tsunami is reported to have encroached 500 m to 2 km at various places owing to the flatness of several beaches. Tide-gauge recorder at Visakhapatnam port in AP showed tsunami heights to be about 1.4 m at 09:05 h. Although eyewitnesses reported tsunami heights up to 5 m, based on our surveys, we estimate the maximum tsunami height to be 2.5 m along the AP coastline, with higher splashes at a few places. However, there was a general agreement amongst people that four waves hit the coast, in which the second wave was the strongest and claimed most lives. Several people reported receding of the sea up to 500 m prior to the arrival of tsunami in the region.

A detailed tsunami run-up survey was carried out along a 350 km long stretch of the shoreline in TN from Pulicat (13.3° lat.) in the north to Vedarammipettai (10.3° lat.) in the south. Shore-normal inundation profiles were studied at 11 locations to estimate the run-up heights of the tsunami. Survey localities were selected on the basis of reports of maximum damage and loss of lives. Profiles within the survey localities were selected on the basis of representative high-watermarks and line-of-sight traverses to beach swash zones. High watermarks were measured from the highest elevations of several different indicators. These indicators include (i) mud lines on standing structures, i.e. maximum still-water elevation, (ii) physical damage to standing structures, i.e. maximum surge elevation and (iii) flatsam debris on tree branches, roofs and ground slopes, i.e. maximum splash elevations and/or maximum inundation distances1. Maximum still-water elevations were preferentially taken from interior-wall mudlines, which should minimize effects from turbulent flow around structures. Exterior-wall mudlines were used where horizontal mudlines could be correlated between buildings. The vertical distance between the
highest horizontal mudline and ground elevation, i.e. tripod footings surface was measured to the nearest centimetre with a tape. Maximum surge elevations were estimated from features reflecting apparent large debris damage at elevations above the mud lines. These features included displaced roof tiles, broken masonry, fresh gouges in plaster and heavy woody debris left in broken or bent tree branches. Maximum splash elevations were established from light flotsam hanging in limbs of standing vegetation and/or draped on standing structures such as railings and roofs. Horizontal sighting distances were generally less than 100 m between level and stadia rod. Elevations were measured to the nearest centimetre. Total profile errors of \(\pm 0.1 \) m are assumed for the single-sighting, single-direction, levelling surveys. End points of the profiles were approximately located by 12-channel GPS using the WGS84 datum. Three levels of flow competence were established from maximum landward transport of gravel, sand and flotsam debris. The gravel-size material included large (>2 cm diameter) shells, brick and mortar fragments and road gravel. General lack of gravel source material likely precluded high flow competence in some areas. Beach sand (0.06 to 2 mm grain diameter) was present in almost all the profiles. Maximum inundation positions were generally evident from semi-continuous lines of debris that crossed streets, vacant lots, fields and wetland surfaces. Large inundation distances in some locations were related to localized flow through dune-ridge gaps or tidal inlets. Overland flow direction was measured from several different features. These features included vegetation, flop-over debris shields wrapped around trunks and sand ripples and linear-scours.

Figure 2 shows the tsunami run-up heights estimated for 11 localities along the TN coast from Pulicat in the north to Vedaranniyam in the south. The tsunami height varies between 2.5 and 5.2 m in these regions, after applying tidal corrections from tide tables published by Survey of India. Maximum surge elevations were also measured and were found to vary between 3.8 and 6.0 m (mean tidal level).

Three zones of flow competence were established from the maximum transport distances of gravel, sand and flotsam in the 11 profiles surveyed. Gravel transport ranged from 30 to 60 m distance from the swash zone in Pattinapakkam, Perakalpet, Devanampattinam and Tarangambi profiles. The gravel-size clasts were largely derived from tsunami-damaged brick walls, foundations and roofing tiles in the region. Maximum sand transport ranged from 90 to 430 m distance from the swash zone in most of the profiles (Table 1). Beach width in most of the profiles varies between 30 and 50 m, except at Parangipet and Nagapattinam, where it was about 300 m. With the exception of these profiles, the average sand transport distance is about 100 m beyond the beach backshore. Tsunami sand deposits ranged from coarse upper (700–1000 \(\mu \)m) to very fine upper (88–125 \(\mu \)m) in grain size, based on comparisons with grain-size cards. Sand sheet thickness ranged from several tens of centimetres near the beach backshore to 1 cm thickness at the distal
end of sand transport. With increasing distance landward, the mean grain size of the sand sheets appeared to decrease. The graded sequence from coarse to fine upwards in each of 2–3 sand layers was observed at the 80 m position at Devanampahtnam. Maximum inundation distances along the profiles were established on the basis of most landward
Analysis of runoff pattern for all major basins of India derived using remote sensing data

Mohan Zade1, S. S. Ray1,*, S. Dutta2 and S. Panigraphy1

1Agro-Ecology and Management Division, ARG/RESIPA, Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, India
2Department of Civil Engineering, Indian Institute of Technology, Guwahati 781 039, India

An attempt has been made to quantify and analyse intra- and inter-basin runoff potential for all basins of India using multi-date remote sensing data, curve number approach and normal rainfall data of 376 stations. Analysis showed that the highest runoff depth (1812 mm) was observed in the Brahmaputra basin (including Barak and other rivers) and the lowest (210 mm) in the Luni and rivers of Saurashtra basin. The Brahmaputra basin, occupying only 8% of the geographical area of the country, provided around 19% of total runoff. In almost all basins, 90% runoff occurs during the five-month period starting from June. The runoff in the Brahmaputra, Narmada and Mahanadi basins responded well to rainfall, i.e. high runoff coefficient, whereas low runoff coefficient was found in the Cauvery basin.

The status of water availability, particularly spatial and temporal pattern at the basin level is essential for regional planning and decision on water management. Runoff is an indicative availability of water. Thus in situ measurement of runoff is useful, however in most cases such measurements are not possible at the desired time and location as conventional techniques of runoff measurement are expensive, time-consuming and difficult. Therefore, rainfall-runoff models are commonly used for computing runoff. The model developed by the United States Department of Agriculture (USDA) Soil Conservation Society (SCS) known as curve number (CN) is popular among all rainfall–runoff models because of its simple mathematical relationships and low data requirement.

The CN represents the watershed coefficient, which is the combined hydrological effect of soil, land use, agricultural land treatment class, hydrological condition and antecedent soil moisture condition (AMC). Generally, the model is well suited for small watersheds of less than 4000 ha, as it requires details of soil physical properties, land use, conservation treatment and vegetation condition. However, with increasing availability of finer spatial resolution information from space-based remote sensing data on vegetation, it is possible to use the SCS model for larger areas with better accuracy. Gumbo et al. found that the CN method worked well in GIS environment because of its relatively simple

ACKNOWLEDGEMENTS. We thank the Directors of NGRI, Hyderabad and NIO, Chennai and the US National Science Foundation through EERI for the support during the study. We acknowledge the support of Mr G. Ragharaman, NIO, during fieldwork.

Received 8 February 2005; accepted 9 March 2005

*For correspondence. (e-mail: ssray@isc.iisc.ernet.in)