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On the gravitational deflection of light
and particles
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The gravitational deflection of light deduced from apply-
ing the equivalence principle is stated to be only half
the general relativistic result. I show that the correct
result is obtained entirely from applying the equivalence
principle if the wave nature of light and particles is
taken into account. This is equivalent to incorporating
the gravitational redshift in the calculation. In Einstein’s
1911 derivation, he used the wave aspect to get half the
general relativistic value, but perhaps presumed that
it was physically identical to the part that came from
the application of the equivalence principle to the ray
trajectory. Here I point out that the two contributions
are independent and have different physical origin
and characteristics. Adding the two contributions to-
gether gives the correct general relativistic value for
light and particles. For material particles, the ‘particle’
part dominates, and for relativistic quantum particles,
the deflection approaches that for light.

THE purpose of this paper is to explore a conceptual issue
connecting general relativity and the wave nature of particles
and light. I will show that the full general relativistic re-
sult for the deflection of light and particles follows from
the equivalence principle alone when applied consistently
to both the particle and wave aspects. The total deflection
is the sum of the Newtonian deflection of the mean tra-
jectory and the gradual bending of the wavefronts due to
the gravitational redshift, and both these follow from the
equivalence principle. The result stresses the fact that the
physical results of general relativity are potentially fully
contained in the physics of Lorentz transformations combined
with the equivalence principle. Though this is known,
since general relativity is derived using special relativity
and equivalence principle as the guiding principles, it is
not adequately appreciated. Also, this result refutes the
standard claim that it is not possible to obtain the correct
result for gravitational deflection from equivalence principle
alone. Further, the identification of the gravitational de-
flection of light as the crucial test of general relativity, in con-
trast to the gravitational redshift, does not seem defendable.

The gravitational deflection of light near a massive
body of mass M was derived by Einstein in his 1911 pre-
cursor paper' to General Theory of Relativity as

2GM
o= 3 ,
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R is the impact parameter, and it is equal to the radius of
the body for grazing incidence. This is half the correct
general relativistic value. The full general relativistic re-
sult” for the deflection angle is

o =21 ®)
c’R
The relevant quantities are marked in Figure 1.
An elementary derivation of the expression for the de-
flection of light within Newtonian mechanics is possible,
and it gives half the general relativistic value™*. The deri-
vation is the same for a fast material particle, and for
light considered as a particle. Essentially one calculates
the Newtonian bending of the trajectory, either assuming
it to be corresponding to that of a freely falling particle
observed from a stationary frame, or that of a free particle
observed from a uniformly accelerating laboratory (this
derivation is different from Einstein’s original derivation).
To get an approximate estimate consider the particle, or
light coupled to gravity, that will fall through a distance

s=82 (3)

during propagation close to the massive object. ¢ is approxi-
mately 2R/v, where R is the radius of the massive body
and v is the velocity of the fast particle. Identical result is
obtained if we use the equivalence principle. In a frame
accelerating up with acceleration —g, the coordinate deflection
of any straight trajectory over time t is s = gt*/2.

The angle of deflection when gf* < vt is the angle bet-
ween the asymptotes. Since the slope of the parabola result-
ing from the free fall is gz, the outgoing asymptote intersect
the incoming straight line trajectory at ¢, = #/2. The time
duration of deflection is t ~ 2R/v. Therefore the angle of
deflection is

Figure 1.
in an accelerating frame and in a gravitational field. Right, Geometrical
relations used in the calculation of the bending of the trajectory.

Left, Correspondence between the gravitational deflection
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o= (g£'12)/(vt/2) =

t 2GM
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This approximate result assumed that most of the deflection
happens close to the massive body.

The same result is obtained from a more complete and
correct calculation. The angle of deflection is simply the slope
of the trajectory as f — oo, relative to the slope at t — —oo.
If the trajectory is denoted as S (¢),

—=y=y )AC-‘rvyy. &)

Referring to Figure 1, at t — —oo, v'=v X. The angle of
deflection is

o=—" (6)

(This reduces to gt/v for the approximate situation consid-
ered earlier). For a proper calculation we need to estimate
v, accumulated over the entire trajectory from f — —oo to
t = +oo. Applying the equivalence principle to any ray
trajectory that corresponds to the propagation at velocity
v, the apparent deflection as observed from an accelerating
frame is

dv
o=—=

; 7

v

where dv, = v, is the change in the transverse velocity.
Initially, v =v,. The y-component of the gravitational accel-
eration, g, = g cos0 (see Figure 1). To apply the equiva-
lence principle we set the acceleration, a,(r) = —g cosb =
GM cos®/r’.

+oo + too
dt 2GM ¢ cosBdx
vy = _'[Qaydt :_'[Qay adx = S '([ ,,.2
_2GM T ydx  2GM ®)
- N (xz+yz)3/z - vy :
0

Since y is the nearly constant impact parameter (which we
write now as R), the deflection is

©)

v v2R

v, 2GM 2GM|c?
c°R | v

Since we used the equivalence principle and invoked the
accelerating frame, this derivation is valid for light as
well, provided we assume a finite velocity for light. The
deflection of a relativistic particle is close to that of light, but
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for the material particle the deflection is larger by factor
¢*/v*. Important point to note is that we have treated light
as a ray, or as a particle, and its wave nature was not
used. We did not even have to use the equivalence principle
if we just assumed that light was a particle with an
equivalent mass of E/c. (In such case, we have to integrate
the expression ff: F,dt to find the change in transverse
momentum, and then divide by the longitudinal momentum to
get the deflection’. The final expressions are the same as
in eq. (8).) This is a doubly Newtonian derivation — Newto-
nian gravity and Newtonian light give the deflection as
o = 2GM/c’R. This will happen even if there is no relativ-
istic effect of order v*/c* like time dilation and gravita-
tional redshift. In other words, Newtonian gravity or
Galilean Equivalence principle, and the assumption of finite
(not necessarily invariant) velocity of light are sufficient
to derive this expression for deflection.

The difference between applying the equivalence prin-
ciple, and integrating the expression r_r: F,dt containing
the gravitational force is that the latter method is not di-
rectly applicable to light without assuming an equivalent
passive gravitational mass for the photon. The derivation
using the accelerated frame is valid for any trajectory that
propagates at velocity v.

Now we come to the crucial point of this discussion. If
we take into account the wave nature of light, there is an
additional contribution coming from the time dilation in
relativity. The observation that this contribution is inde-
pendent and additional to the Newtonian deflection of the
mean trajectory is the main point of the this paper. This
contribution comes about as follows.

Consider plane waves propagating freely in a straight
line. We can also consider a more realistic spatially Gaus-
sian wave-packet propagating near a massive body of mass
M and radius R. Without using any aspect of special rela-
tivity, like time dilation, we see from the equivalence
principle that the ray of propagation (any normal to the
wavefronts) deflects and that this deflection is physically
and mathematically same as the one expressed in eqs (8)
and (9). But this does not yet use the relativistic result
that the rates of clocks are different at different heights in
a uniform gravitational field. Once we also take into account
the gravitational redshift, there is additional bending of light.

The gravitational redshift formula can be derived in
many ways’. One way is to use special relativity and the
equivalence principle. Another simpler way is to use the
conservation of energy in a gravitational field, along with the
results E = mc”, and also E = hv. Either way, we get that the
frequency at a distance 4 closer to the body is higher by

v/ =v (1 + ghlc®)
Av =V’ —v=vgh/c’.

(10)

There is no need to use any specific general relativistic aspect
for this derivation and hence this is one of the most straight-
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forward results from combining the equivalence principle
and special relativity, with the fundamental quantum
equation for energy (It is sufficient to use the quantum
equation for energy and the conservation of energy).

Variation of the redshift factor as the height changes in
the gravitational field gives rise to bending of waves of
light. In fact, this is the physical reasoning used by Einstein
in his 1911 derivation of the bending of light, and not the
reasoning using accelerated frames and equivalence princi-
ple. Instead of describing the effect as due to redshift, he
considered the equivalent effect that the velocity of light
varies with height in a gravitational field, resulting in the
bending of wavefronts'. Since the velocity of the wave-
fronts in a higher negative potential is smaller, the wave-
fronts bend towards the source of the gravitational field.
Using the redshift concept, the wave fronts (surfaces of
equal phase) are closer together in a deeper potential, as
shown in the Figure 2, and they gradually bend. First we
indicate the result with an approximate derivation. The
deflection over the duration ¢t = 2R/v, where v is the phase
velocity of the waves, is given by

5 = (Av)idy /h =08y, 2R 20V
c v c’R

(D

Ao and v, are the mean wavelength and frequency and Agve =
v. This is the accumulated path length difference at two
points separated by distance A4, divided by 4. A more
complete calculation that gives the same result is done
later when the deflection of matter waves is considered.
The most important aspect of this part of the deflection is
that it is independent of the velocity of the waves, unlike
the deflection we obtained applying the equivalence principle
to the particle or ray. This crucial difference immediately
reveals that the two contributions are of different physical
origin, and are independent.

From the history of the problem it seems to me that after
Einstein derived the deflection of light in his 1911 paper,
he assumed that the result he obtained considering the
variation of the velocity of light in a gravitational field

It
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Figure 2. Gradual bending of the wavefronts due to the gravitational
redshift factor affecting the wavelength at different heights in a gravita-
tional field. @, Plane wavefronts, with spacing indicating the wave-
length; b, Gradual bending of the normal to the wavefront consistent
with gravitational redshift, and ¢, The geometrical relations needed to
derive the bending of the wavefronts in the gravitational field. The
quantity % is greatly exaggerated for clarity.
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and the wave aspect of light was physically the same as
the one from applying the Newtonian deflection or the
equivalence principle to a ray of light or a particle'. From
the character of the two contributions it is clear that these
are physically different. Only for light in vacuum the two
contributions have the same magnitude, and since the 1911
derivation was done for this case, it seems clear why it
was not realized that the two contributions are physically
independent and different. The concept of a matter wave
was introduced only after 1920. But if the calculation in
the 1911 paper is repeated for matter waves, with average
group velocity v of the particle, it would immediately be
clear that the resulting deflection is very different from the
deflection derived from applying the equivalence principle
to the same particle. I illustrate this in the next paragraph.
Also, if the calculation in the 1911 paper is done for sound
waves, or other ‘material waves’, the presence of two in-
dependent effects is revealed. So, the full physical aspects
needed to derive the correct deflection of light was already
contained in the 1911 paper itself. One does not need full
general relativity for deriving the expression for the deflection
of light. What is needed is the equivalence principle, con-
servation of energy, and the wave nature of light. One
part of the deflection comes from the free fall of the par-
ticle or light ray in the gravitational field, and the deflection
depends on the average velocity of the test particle. The
other part comes from the redshift factor. This is always
given by 8=2GM/c’R, independent of the velocity. Com-
bining the two we are able to get the correct formula for
the gravitational deflection. It is the ‘relativistic’ part, affect-
ing the waves, that is independent of the velocity of the
waves, and the Newtonian contribution is proportional to the
inverse of the square of the velocity. For light, both con-
tributions have the same magnitude, and they add to give
the full deflection,

4GM
c’R ’

(12)

2GM
(xhght = 2—+ (AV )t}\.o /h =
ViightR

using eqs (9) and (11).

For deriving the expression for the deflection of quantum
particles, consider the matter wave propagating in a gra-
vitational field (the derivation is applicable to any wave).
The matter wave obeys the same equation (eq. 10) of fre-
quency redshift as for light,

v’ =v(l + ghl/c®).

The angle of deflection can be calculated by integrating
the phase over the entire trajectory to find the path differ-
ence between two points on the wavefront separated by a
distance / and then dividing by 4. R_e)ferging to the part C
of Figure 2, and noting that 2 or [rl-r2| <R, and that
the angle © is essentially the same for both the vectors 71
and 72, the phase difference is
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AQ = T o(rDdt— T o(r2)dt

— o0 — o0

CZ

_ —GMa, T[L—L]idx _ 2GMw,
r2 Jdx

oo

_ 2GMwy '[ hcosb dx
Cz 0 1"2 v
—2GMo, T hy  dx  -2GMayh
= 2 ,[ 2, 232 2 ’ (13)
c 0 (x"+y7) v cyv

where s = |;i—r_2> |, a constant for small deflection. wy is
the mean frequency. The negative phase difference indicates
bending towards the source.

The difference in path length over the distance % is
Al = A@-Ao/27. Denoting y as R, the angle of deflection is

_Aghy /2 2GMwghy  2GM

- - >
’R

(14)

wave
h

21’ Ry

since Weho/27 = v, the phase velocity of the waves. Since the
phase velocity has dropped out of the final expression,
the deflection is same for waves with different de Broglie
wavelength (as one would expect from the consistency
with the equivalence principle) and the derivation is ap-
plicable for a general wave-packet solution of the Schrédinger
equation. This is important, since the achromaticity of the
gravitational bending makes the formula universal and
applicable to any type of wave with any wavelength.

The deflection Oy is negligible compared to the tra-
jectory deflection, eq. (9), for moderate speeds by a factor
v?/c*. This highlights the fact that there are in fact two
physically distinct contributions. The total deflection of
fast material particles is the sum of the two contributions,
eqs (9) and (11),

o XM ch
ARV

(15)

Thus, Einstein’s derivation of 1911 gives only the velocity
independent part of total deflection and misses out the
larger contribution when applied to waves with velocity
different from that of light. As the particle becomes rela-
tivistic, the gravitational deflection approaches that of light,
and becomes exactly

_4GM
’R

. , (16)

for light.
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An interesting case is the deflection of sound waves in
a gravitational field (what I consider is the deflection of
sound around an isolated spherical object of mass M and
radius R. This way, asymptotes can be defined accurately).
If we repeat the calculation by Einstein in his 1911 paper
considering sound waves instead of light waves, or if we
follow the derivation using the redshift factor in the gra-
vitational field as we did for the case of matter waves, the
deflection is

2GM
’R

: (a7

This is independent of the velocity of the sound waves!
The equivalence principle applied to the situation without
bothering about the gravitational redshift along the vertical in
the wavefront will give an additional deflection due to the
fact that the density of the medium varies with the verti-
cal distance such that the equivalent gravitational force is
balanced by the hydrostatic pressure. The density of the
medium reduces with height in the gravitational field, and
this contribution to the deflection depends on the properties
of the medium, the gravitational acceleration, and the velocity
of sound (In the atmosphere, the velocity of sound is de-
termined more by the variation of temperature and the velo-
city in fact decreases with height). Denoting this part of
the deflection as 0.4, the total deflection is

_2GM
c’R

F0lpeq - (18)

a,

Again, as in the case of matter waves, we see that one part
of the deflection comes from the gravitational redshift
along a direction parallel to g, and it is independent of
the velocity of the waves. (Since sound waves require the
medium, and since the medium is ‘static’ in a gravitational
field, deflection of propagating sound energy is different
from that of propagating entities that do not require a me-
dium. From physical considerations, the velocity independent
term 2GM/c’R is necessarily present for consistency with
relativity, irrespective of whether there is a velocity depen-
dent Newtonian term).

As another instructive application let us consider the
gravitational bending of light in a gravitational field as it
propagates in a medium. The velocity is reduced by the
refractive index factor n. Essentially light spends more
time in the gravitational field and therefore more bending
is expected from Newtonian considerations. But the bending
angle o is not 4GMn*/c’R, where R is the spatial region
over which gravity acts. It is only the Newtonian part that
depends on the velocity that is increased by the refractive
index factor, and the contribution from the gravitational
redshift remains unaffected. Thus the equation for bending
of light should be

_2GM

(1+n?).
’R

o

(19)
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(This is written for a situation where the light comes from
a region far away compared to the size of the massive object,
such that asymptotes can be defined).

Similar velocity independent terms are present in other
situations involving gravitational fields and matter or light
waves, as highlighted in ref. 5 in the context of the Sagnac
effect. In the context of the discussion in that paper, the
relativistic part of the gravitational deflection is in fact
the ratio of the local gravitational potential (generated by
the massive body) and the gravitational potential due to
all the masses in the universe. For a universe with critical
density (p =2 x 10 g/em’) and an effective causal size
of Ry ~ 107 cm, the gravitational potential at every point
is numerically close to the quantity ¢*. This clarifies why
one part of the deflection is always given by an invariant
factor, where, surprisingly, the velocity of light appears even
while considering the gravitational deflection of other
material particles or waves.

It is important to stress why this derivation gives a re-
sult identical to the full general relativistic result in which
no wave aspect of light or particle is directly used. The
non-Newtonian part of the deflection in general relativity
comes from consideration of the curvature of the space-time
in which the deflection occurs close to the massive body.
The spatial coordinate system near the massive object is
general relativistically distorted with respect to the as-
ymptotic coordinate system in which the measurements
are made. The gravitational factor that contributes to the
additional deflection is same as the factor that is responsible
for the gravitational redshift of a wave in the gravitational
field. Therefore, whether we use an extended entity like a
wave to include the variation of the time dilation factors in
the gravitational field, or use the curvature of space-time
caused by the mass, the results are the same. In other
words, the plane wavefront is like a coordinate grid in the
direction perpendicular to the wave vector, and the gravi-
tational redshift and resulting bending are exactly like the
curvature of any imaginary coordinate grid. What is im-
portant is to note that such a contribution is fundamen-
tally different from the deflection obtained by applying
the equivalence principle to a ray or a particle. This need
not mean that general relativistic gravity is inconsistent
without the quantum nature and wave aspect of particles to
which the theory applies. However, one may argue that
point particles without a quantum mechanical wave aspect
are not fully consistent with general relativity in a local
analysis, since point particles are singularities of the field.
This issue needs to be studied further. What general relati-
vity needs is the relativistic changes of scales and clocks as
the position is changed in the gravitational potential. These
effects can be incorporated either by correctly taking into
account of the transformation between coordinates as
usually done in the general relativistic derivation of the
deflection light, or by considering physical effects on spa-
tially extended objects, like waves. Both are equivalent as
far as the final result for deflection is concerned, though
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there are important differences in the conceptual and physical
aspects of the two approaches. The discussion presented
here using explicitly the physical effects on waves in a gravi-
tational field is by far the simplest, and most transparent.
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Preparation and characterization
of magnesium ion conducting
glass—polymer composite films
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The flexible glass—polymer composite film electrolytes of
high magnesium ion conducting oxysulfide glass and
the comb-shaped poly(oxyethylene) polymer (TEC-19)
were prepared. The conductivity of the composite film
with 2% (v/v) TEC-19 doped with Mg(CIO,), was
1.2x 107 S em™ at 100°C and 3.5x 10~° S cm™ at 30°C.
The composite exhibited a 4V stable potential window
versus Mg”*/Mg. The flexible glass—polymer composite
films prepared in this way are promising solid electro-
Iytes for solid magnesium secondary batteries. The
electrical conductivity for pelletized composite film was
measured in a dry Ar atmosphere by the ac impedance
method in the temperature range 25-250°C and the fre-
quency range 1 Hz—10 MHz. Temperature dependence
of electrical conductivities of glass—polymer compos-
ites has been observed.

TONIC conducting polymers'” have been of considerable in-
terest because of their commercial application as batteries,
signal processing devices, vacuum tubes, semiconductors,
fibre-optics, charge-transfer complexes, etc. Many workers’
have reported synthesis and other characteristic data on the
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