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Recent cosmological observations suggest that nearly
seventy per cent of the energy density in the universe
is unclustered and has negative pressure. Several con-
ceptual issues related to the modelling of this component
(‘dark energy’), which is driving an accelerated expan-
sion of the universe, are reviewed with special emphasis
on the cosmological constant as the possible choice for the
dark energy.

I. The cosmological paradigm

THE last couple of decades have been the golden age for
cosmology, in much the same way as the mid-1900s were
a golden age for particle physics. Data of exquisite quality
confirmed the broad paradigm of standard cosmology and
helped us to determine the composition of the universe.
As a direct consequence, the cosmological observations have
thrusted upon us a rather preposterous composition for
the universe which defies any simple explanation, thereby
posing the greatest challenge theoretical physics has ever
faced.

To understand these exciting developments, it is best to
begin by reminding ourselves of the standard paradigm
for cosmology. Observations show that the universe is fairly
homogeneous and isotropic at scales larger than about
150 h™' Mpc, where 1 Mpc = 3 x 10** cm is a convenient unit
for extragalactic astronomy and 4 =~ 0.7 characterizes' the
current rate of expansion of the universe in dimensionless
form. (The mean distance between galaxies is about 1 Mpc
while the size of the visible universe is about 3000 h™' Mpc.)
The conventional —and highly successful — approach to
cosmology separates the study of large scale (/= 150h"
Mpc) dynamics of the universe from the issue of structure
formation at smaller scales. The former is modelled by a
homogeneous and isotropic distribution of energy density;
the latter issue is addressed in terms of gravitational in-
stability which will amplify the small perturbations in the
energy density, leading to the formation of structures like
galaxies.

In such an approach, the expansion of the background
universe is described by a single function of time a(?)
which is governed by the equations (with ¢ = 1):
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The first one relates expansion rate to the energy density
p and k=0,%1 is a parameter which characterizes the
spatial curvature of the universe. The second equation,
when coupled with the equation of state p = p(p), deter-
mines the evolution of energy density p = p(a) in terms
of the expansion factor of the universe. In particular if
p =wp with (at least, approximately) constant w then,
p o< a ™ and (if we assume k = 0), a oc /],

It is convenient to measure the energy densities of dif-
ferent components in terms of a critical energy density
(pe) required to make k=0 at the present epoch. (Of
course, since k is a constant, it will remain zero at all epochs if
it is zero at any given moment of time.) From eq. (1), it is
clear that p, = 3Hy/8nG where H, = (a/a), is the rate of
expansion of the universe at present. The variables Q; =
p/p. will give the fractional contribution of different
components of the universe (i denoting baryons, dark
matter, radiation, etc.) to the critical density. Observations
then lead to the following results:

e Our universe has 0.98 < Q,,; < 1.08. The value of Qi
can be determined from the angular anisotropy spectrum
of the cosmic microwave background radiation (CMBR)
(with the reasonable assumption that s > 0.5) and these
observations now show that we live in a universe with
critical density””.

¢ Observations of primordial deuterium produced in big
bang nucleosynthesis (which took place when the uni-
verse was about 1 min in age) as well as the CMBR obser-
vations show that* the fofal amount of baryons in the
universe contributes about Qg = (0.024 +0.0012)h >,
Given the independent observations on the Hubble con-
stant' which fix 7 =0.72+0.07, we conclude that
Qg = 0.04-0.06. These observations take into account
all baryons which exist in the universe today irrespective
of whether they are luminous or not. Combined with
previous item we conclude that most of the universe is
non-baryonic.

e Host of observations related to large scale structure and
dynamics (rotation curves of galaxies, estimate of clus-
ter masses, gravitational lensing, galaxy surveys, etc.)
all suggest’ that the universe is populated by a non-lumi-
nous component of matter (dark matter, (DM)) made of
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weakly interacting massive particles which does cluster
at galactic scales. This component contributes about
Qpy = 0.15-0.30.

¢ Combining the last observation with the first we con-
clude that there must be (at least) one more component
to the energy density of the universe contributing about
70% of critical density. Early analysis of several obser-
vations® indicated that this component is unclustered
and has negative pressure. This is confirmed dramati-
cally by the supernova observations (see ref. 7; for a
critical look at the data, see refs 8, 9). The observations
suggest that the missing component has w=p/p < —0.78
and contributes Qpg = 0.7-0.85.

e The universe also contains radiation contributing and
energy density Qph> =2.56 x 10~ today most of which
is due to photons in the CMBR. This is dynamically irrele-
vant today but would have been the dominant component
in the universe at redshifts larger that z.q = Qpy/Qp =
4 x 10*Qpuh’.

e Together we conclude that our universe has Qpg ~ 0.7,
Qo = 0.26, Qp ~0.04, Qp =5 x 107, All known obser-
vations are consistent with such an — admittedly weird —
composition for the universe.

Before discussing the composition of the universe in
greater detail, let us briefly consider the issue of structure
formation. The key idea is that if there existed small fluc-
tuations in the energy density in the early universe, then
gravitational instability can amplify them in a well-under-
stood manner (see e.g., ref. 10), leading to structures like
galaxies, etc. today. The most popular theoretical model
for these fluctuations is based on the idea that if the very
early universe went through an inflationary phase'’, then
the quantum fluctuations of the field driving the inflation
can lead to energy density fluctuations'>". It is possible
to construct models of inflation such that these fluctua-
tions are described by a Gaussian random field and are
characterized by a power spectrum of the form P(k) = A"
with » =~ 1. The models cannot predict the value of the
amplitude 4 in an unambiguous manner but it can be de-
termined from CMBR observations. The CMBR observations
are consistent with the inflationary model for the genera-
tion of perturbations and gives 4 ~ (28.3 h™' Mpc)* and
n=10.97 £ 0.023 (The first results were from COBE'* and
WMAP? has reconfirmed them with far greater accuracy).
So, to the zeroth order, the universe is characterized by
just seven numbers: i = 0.7 describing the current rate of
expansion; Qpg =~ 0.7, Qpy =0.26, Q5 ~0.04, Qp =5 X
107 giving the composition of the universe; the amplitude
A=~ (28.3 h'' Mpc)* and the index n ~ 1 of the initial per-
turbations. The challenge is to make some sense out of
these numbers from a more fundamental point of view.

II. The dark energy

It is rather frustrating that we have no direct laboratory
evidence for nearly 96% of matter in the universe. (Actu-
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ally, since we do not quite understand the process of
baryogenesis, we do not understand Qg either; all we can
theoretically understand now is a universe filled entirely
with radiation!) Assuming that particle physics models
will eventually come of age and (i) explain Qp and Qpy
(probably as the lightest supersymmetric partner) as well
as (ii) provide a viable model for inflation predicting correct
value for 4, one is left with the problem of understanding
Qpe. While the issues (i) and (ii) are by no means trivial
or satisfactorily addressed, it is probably correct to say
that the issue of dark energy is lot more perplexing, thereby
justifying the attention it has received recently.

The key observational feature of dark energy is that —
treated as a fluid with a stress tensor 73 = dia(p, —p, —p, —p) —
it has an equation state p = wp with w < 0.8 at the pre-
sent epoch. The spatial part g of the geodesic acceleration
(which measures the relative acceleration of two geodesics
in the spacetime) satisfies an exact equation in general
relativity (see e.g., page 332 of ref. 15) given by:

V.g =-4nG(p + 3p). 2)

This shows that the source of geodesic acceleration is
(p + 3p) and not p. As long as (p + 3p) > 0, gravity remains
attractive while (p + 3p) <0 can lead to repulsive gravita-
tional effects. In other words, dark energy with sufficiently
negative pressure will accelerate the expansion of the uni-
verse, once it starts dominating over the normal matter. This
is precisely what is established from the study of high
redshift supernova, which can be used to determine the
expansion rate of the universe in the past’ . Figure 1 pre-
sents the supernova data as a phase portrait of the uni-
verse (plotting the ‘velocity’ a against ‘position’ ). It is
clear that the universe was decelerating at high redshifts
and started accelerating when it was about two-thirds of
the present size.

The simplest model for a fluid with negative pressure
is the cosmological constant (for a review, see ref. 16)
with w=—1, p = —p = constant (which is the model used
in Figure 1). If the dark energy is indeed a cosmological
constant, then it introduces a fundamental length scale in
the theory L, = H,, related to the constant dark energy
density ppp by Hj = (8nGpp/3). In classical general rela-
tivity, based on the constants G, ¢ and L,, it is not possi-
ble to construct any dimensionless combination from these
constants. But when one introduces the Planck constant,
h, it is possible to form the dimensionless combination
Hia(Gh/c?y = (Lp/LY). Observations then require (L3/L3)
< 107'%. As has been mentioned in the literature, this will
require enormous fine tuning. What is more, in the past, the
energy density of normal matter and radiation would have
been higher while the energy density contributed by the
cosmological constant does not change. Hence we need to
adjust the energy densities of normal matter and cos-
mological constant in the early epoch very carefully so
that p, = pnr around the current epoch. This raises the
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second of the two cosmological constant problems: Why
is it that (po/pxr) = (1) at the current phase of the uni-
verse?

Because of these conceptual problems associated with
the cosmological constant, people have explored a large
variety of alternative possibilities. The most popular
among them uses a scalar field ¢ with a suitably chosen
potential V() so as to make the vacuum energy vary with
time. The hope then is that, one can find a model in which
the current value can be explained naturally without any
fine tuning. A simple form of the source with variable w
are scalar fields with Lagrangians of different forms, of
which we will discuss two possibilities:

Lquin = %8a¢a”¢ — V(9); Liger = —V(¢)[1—aaq>a“¢]”2_ 3)

Both these Lagrangians involve one arbitrary function
V(9). The first one, Ly, which is a natural generalization
of the Lagrangian for a non-relativistic particle, L = (1/2) ¢*-
V(q), is usually called quintessence (for a sample of mod-
els, see ref. 17). When it acts as a source in Friedman
universe, it is characterized by a time dependent w(#) with

. . _ v
pq(t):%q)z-i-V; pq(t):%q)z_y;w :%_ (4)
1+2V/67)

Figure 1. The ‘velocity’ @ of the universe is plotted against the ‘posi-
tion” a in the form of a phase portrait. The different curves are for models
parameterized by the value of Qpu{= Q) keeping Q.,; = 1. The topmost
curve has Q. = 1 with no dark energy and the universe is decelerating
at all epochs. The bottommost curve has Q, =0 and Qpg=1 and the
universe is accelerating at all epochs. The in-between curves show uni-
verses which were decelerating in the past and began to accelerate
when the dark energy started dominating. The supernova data clearly
favours such a model. (For a more detailed discussion of the figure, see
refs §,9.)
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The structure of the second Lagrangian in eq. (3) can be
understood by a simple analogy from special relativity (see
the first reference in ref. 18). A relativistic particle with
(one dimensional) position g() and mass m is described
by the Lagrangian L = -m(1 —92)1/2. It has the energy
E=m/(1-¢""" and momentum k=mg/(1 —¢*)"* which
are related by E> = k> + m”. As is well known, this allows
the possibility of having massless particles with finite en-
ergy for which E” =k’ This is achieved by taking the
limit of m — 0 and ¢ — 1, while keeping the ratio in
E=m/(1 _é2)1/2 finite. The momentum acquires a life of
its own, unconnected with the velocity ¢, and the energy
is expressed in terms of the momentum (rather than in
terms of ¢) in the Hamiltonian formulation. We can now
construct a field theory by upgrading ¢(f) to a field ¢.
Relativistic invariance now requires ¢ to depend on both
space and time [¢ = 0(z, x)] and ¢ to be replaced by
9,00'0. It is also possible now to treat the mass parameter
m as a function of 0, say, V(0) thereby obtaining a field
theoretic Lagrangian L = —V(0) (1-9'¢d,9)""?. The Hamil-
tonian structure of this theory is algebraically very similar
to the special relativistic example we started with. In par-
ticular, the theory allows solutions in which V' — 0,
0,000 — 1 simultaneously, keeping the energy (density)
finite. Such solutions will have finite momentum density
(analogous to a massless particle with finite momentum
k) and energy density. Since the solutions can now depend
on both space and time (unlike the special relativistic ex-
ample in which g depended only on time), the momentum
density can be an arbitrary function of the spatial coordinate.
This provides a rich gamut of possibilities in the context of
cosmologylHl. This form of scalar field arises in string
theories™ and — for technical reasons — is called a tachyonic
scalar field. (The structure of this Lagrangian is similar to
that analysed in a wide class of models called K-essence;
see for example, ref. 23.)

The stress tensor for the tachyonic scalar field can be
written as the sum of a pressure-less dust component and
a cosmological constant (see the first reference in ref. 19).
To show this explicitly, we break up the density p and the
pressure p and write them in a more suggestive form as

P = Pat+ Pom; P = pr + Pom, where

_r@Yeds
- = > DM — Y
-9,
pr=V() 1_ai¢ai¢; Py =—Pa- &)

This means that the stress tensor can be thought of as made
up of two components — one behaving like a pressure-less
fluid, while the other having a negative pressure.

When ¢ is small (compared to ¥ in the case of quintes-
sence or compared to unity in the case of tachyonic field),
both these sources have w — —1 and mimic a cosmological
constant. When ¢ > V¥, the quintessence has w = 1 leading
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to pyec (1 +z)6;.the tachyonic field, on the other hand,
has w=0 for ¢ — 1 and behaves like non-relativistic
matter. In both the cases, —1 <w < 1, though it is possible
to construct more complicated scalar field Lagrangians24
with even w <-1. (For some alternatives to scalar field
models see, for example, ref. 25.)

Since the quintessence field (or the tachyonic field) has
an undetermined free function F(0), it is possible to choose
this function in order to produce a given H(a). To see this
explicitly, let us assume that the universe has two forms
of energy density with p(a) = Punown(@) + py(@), where
Pinown(@) arises from any known forms of source (matter,
radiation, etc.) and py(a) is due to a scalar field. Let us
first consider quintessence. Here, the potential is given
implicitly by the form'**®

V(a)= ﬁH(I—Q){6H+2aH'—TIj—g} (6)

1 17 cda| dinz? 1"
¢(a)=[%} j;{ag—(l—g) dlna} NG

where O(a) = [8TGPyuown(@)/3H(a)] and prime denotes
differentiation with respect to a. Given any H(a), Q(a),
these equations determine V(a) and ¢(a) and thus the poten-
tial V(9).

Every quintessence model studied in the literature can
be obtained from these equations. We shall now briefly
mention some examples:

® Power law expansion of the universe can be generated by
a quintessence model with () = ¢ *. In this case, the en-
ergy density of the scalar field varies as p, o< £ >“@";
if the background density p,, varies as pyg o< 12, the
ratio of the two energy densities changes as (py/pyg =
) Obviously, the scalar field density can domi-
nate over the background at late times for o > 0.

e A different class of models arise if the potential is taken
to be exponential with, say, () o< exp(—Ad/Mp;). When
k=0, both py and py, scale in the same manner leading to

Py 3+ wy)

; ®)
pbg + p¢ 7\'2

where wy, refers to the background parameter value.
In this case, the dark energy density is said to ‘track’
the background energy density. While this could be a
model for dark matter, there are strong constraints on
the total energy density of the universe at the epoch of
nucleosynthesis. This requires Q, < 0.2 requiring
dark energy to be subdominant at all epochs.

® Many other forms of H(a) can be reproduced by a combi-
nation of non-relativistic matter and a suitable form of
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scalar field with a potential V(¢). In fact, one can
make the dark energy to vary with & in an unspecified
manner’’ as a . In this case we need H'(a)=H}
[Qura” + (1 = Qur)a "] which can arise if the universe
is populated with non-relativistic matter with density
parameter Qur and a scalar field with the potential,
determined using eqs (6), (7). We get

V(0) = ¥ sinh™ a0 - w1, 9)
where

B o< N

oG |(1-9y) |

a=0GB-n2rG/n)"? (10)

and y is a constant.

Similar results exist for the tachyonic scalar field as
well"’. For example, given any H(a), one can construct a
tachyonic potential V(¢) so that the scalar field is the
source for the cosmology. The equations determining V(¢)
are now given by:

1/2
_(daf aQ" 2aH’
¢(a)_jaH[3(1—Q) 3 H] : (h
3 2aii’ a0 )’
V_%(1—Q)[1+§7—3(1_Q)] . (12)

Equations (11) and (12) completely solve the problem.
Given any H(a), these equations determine V(a) and 0(a)
and thus the potential V(). As an example, consider a
universe with power law expansion a = ¢". If it is populated
only by a tachyonic scalar field, then O = 0; further, (aH'/H)
in eq. (11) is a constant making ¢ a constant. The com-
plete solution is then given by

1/2 5 1/2
2 3 2 V7?1
H=|—| 1+ V(O ="r|1-—| =,
0 [3;1] %03 70 8756[ 3n] 7

(13)

where n > (2/3). Combining the two, we find the potential
to be

V)= (14)

" 5 V12
1-— —0) .
4756[ 3n] ©—%)
For such a potential, it is possible to have arbitrarily rapid
expansion with large n. (For the cosmological model,
based on this potential, see ref. 20.) A wide variety of phe-
nomenological models with time-dependent cosmological
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constant have been considered in the literature, all of which
can be mapped to a scalar field model with a suitable J(0).

While the scalar field models enjoy considerable popu-
larity (one reason being they are easy to construct!) it is
very doubtful whether they have helped us to understand
the nature of the dark energy at any deeper level. These
models, viewed objectively, suffer from several short-
comings:

e They completely lack predictive power. As explicitly
demonstrated above, virtually every form of a(#) can be
modelled by a suitable ‘designer’ V(0).

¢ These models are non-predictive and degenerate in another
sense. The previous discussion illustrates that even
when w(a) is known/specified, it is not possible to pro-
ceed further and determine the nature of the scalar field
Lagrangian. The explicit examples given above show
that there are at least two different forms of scalar field
Lagrangians (corresponding to the quintessence or the
tachyonic field) which could lead to the same w(a).
(See ref. 8 for an explicit example of such a construction.)

e All the scalar field potentials require fine tuning of the
parameters in order to be viable. This is obvious in the
quintessence models in which adding a constant to the
potential is the same as invoking a cosmological con-
stant. So to make the quintessence models work, we
first need to assume the cosmological constant is zero.
These models, therefore, merely push the cosmological
constant problem to another level, making it somebody
else’s problem!

¢ By and large, the potentials used in the literature have
no natural field theoretical justification. All of them are
non-renormalizable in the conventional sense and have
to be interpreted as a low energy effective potential in
an adhoc manner.

* One key difference between cosmological constant and
scalar field models is that the latter lead to a w(a) which
varies with time. If observations have demanded this,
or even if observations have ruled out w=-1 at the
present epoch, then one would have been forced to take
alternative models seriously. However, all available obser-
vations are consistent with cosmological constant (w =-1)
and —in fact —the possible variation of w is strongly
constrained®® as shown in Figure 2. (Also see ref. 29).

Given this situation, we shall now take a more serious look
at the cosmological constant as the source of dark energy
in the universe.

1. ...For the Snark was the Boojum, you see

If we assume that the dark energy in the universe is due
to a cosmological constant then we are introducing a second
length scale, L, = ]{A1 , into the theory (in addition to the
Planck length Lp) such that (Lp = L,) =~ 10", Such a universe
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will be asymptotically deSitter with a(?) o< exp(t = L,) at
late times. We will now explore several peculiar features
of such a universe.

Figure 3 summarizes these features™ . Using the charac-
teristic length scale of expansion, the Hubble radius dy =
(ala)”', we can distinguish between three different phases
of such a universe. The first phase is when the universe
went through a inflationary expansion with dy = constant;
the second phase is the radiation/matter dominated phase
in which most of the standard cosmology operates and dy
increases monotonically; the third phase is that of re-
inflation (or accelerated expansion) governed by the cos-
mological constant in which dy is again a constant. The
first and last phases are time translation invariant (that is
t — t+ constant is an (approximate) invariance for the
universe in these two phases); the universe satisfies the
perfect cosmological principle and is in steady state during
these phases!

In fact, one can easily imagine a scenario in which the
two deSitter phases (first and last) are of arbitrarily long
duration®. If Q4 = 0.7, Qpy =~ 0.3 the final deSitter phase
does last forever; as regards the inflationary phase, noth-
ing prevents it from lasting for arbitrarily long duration.
Viewed from this perspective, the in between phase —in
which most of the ‘interesting’ cosmological phenomena
occur — is of negligible measure in the span of time. It
merely connects two steady state phases of the universe.

Given the two length scales Lp and L,, one can construct
two energy scales pp = 1/L} and p, = 1/L} in natural units

30,31

2w=D)

P}/ Oyl

Figure 2. Constraints on the possible variation of the dark energy
density with redshift. The darker shaded region (magenta) is excluded
by SN observations while the lighter shaded region (green) is excluded
by WMAP observations. It is obvious that WMAP puts stronger con-
straints on the possible variations of dark energy density. The cosmo-
logical constant corresponds to the horizontal line at unity. The region
between the dotted lines has w > —1 at all epochs. (For more details, see
ref. 28.)
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Figure 3. The geometrical structure of a universe with two length scales Lp and L, corresponding to the

Planck length and the cosmological constant. Such a universe spends most of its time in a deSitter phase
which is (approximately) time translation invariant. The first deSitter phase corresponds to the inflation
and the second corresponds to the accelerated expansion arising from the cosmological constant. Most of
the perturbations generated during the inflation will leave the Hubble radius (at A) and re-enter (at B).
However, perturbations which exit the Hubble radius earlier than C will never re-enter the Hubble radius,
thereby introducing a specific dynamic range CE during the inflationary phase. The epoch F is character-
ized by the redshifted CMB temperature becoming equal to the deSitter temperature (H,/27) which intro-
duces another dynamic range DF in the accelerated expansion after which the universe is dominated by

vacuum noise of the deSitter spacetime.

(¢ =% =1). The first is of course the Planck energy density
while the second one also has a natural interpretation.
The universe which is asymptotically deSitter has a horizon
and associated thermodynamics™ with a temperature 7 =
H,/2n and the corresponding thermal energy density
Pithermal & T o 1/L1 = pa- Thus Lp determines the highest
possible energy density in the universe while L, deter-
mines the /owest possible energy density in this universe.
As the energy density of normal matter drops below this
value, the thermal ambience of the deSitter phase will remain
constant and provide the irreducible ‘vacuum noise’.
Note that the dark energy density is the geometric mean
PpE = (pApp)” * between the two energy densities. If we
define a dark energy length scale Lpg such that ppg=
l/LSE then Lpg = (LpLA)l/2 is the geometric mean of the
two length scales in the universe. Figure 3 also shows the
variation of Lpg.

While the two deSitter phases can last forever in principle,
there is a natural cut off length scale in both of them
which makes the region of physical relevance to be finite™.
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Let us first discuss the case of re-inflation in the late uni-
verse. As the universe grows exponentially in the phase
3, the wavelength of CMBR photons is being redshifted
rapidly. When the temperature of the CMBR radiation
drops below the deSitter temperature (which happens when
the wavelength of the typical CMBR photon is stretched
to the L,), the universe will be essentially dominated by
the vacuum thermal noise of the deSitter phase. This happens
at the point marked F. From the equation Ty(a¢/ar) =
(1/2wL4) we find that the dynamic range of DF is

1/3
~3x10%

(15)

Q
& —onTyL, | =4
as Qpyp

Interestingly enough, one can also impose a similar bound
on the physically relevant duration of inflation. We know
that the quantum fluctuations generated during this infla-
tionary phase could act as seeds of structure formation in
the universe'”. Consider a perturbation at some given wave-
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length scale which is stretched with the expansion of the
universe as A o< a(f). (See the line marked AB, in Figure
3.) During the inflationary phase, the Hubble radius re-
mains constant while the wavelength increases, so that the
perturbation will ‘exit’ the Hubble radius at some time
(the point A in Figure 3). In the radiation dominated phase,
the Hubble radius dy o< ¢ oc a” grows faster than the wave-
length A o< a(f). Hence, normally, the perturbation will
‘re-enter’ the Hubble radius at some time (point B in Fig-
ure 3). If there was no re-inflation, this will make al/
wavelengths re-enter the Hubble radius sooner or later.
But if the universe undergoes re-inflation, then the Hubble
radius ‘flattens out’ at late times and some of the pertur-
bations will never reenter the Hubble radius! The limiting
perturbation which just ‘grazes’ the Hubble radius as the
universe enters the re-inflationary phase is shown by the
line marked CD in Figure 3. If we use the criterion that
we need the perturbation to reenter the Hubble radius, we
get a natural bound on the duration of inflation which is
of practical relevance. This portion of the inflationary re-
gime is marked by CE and can be calculated as follows:
Consider a perturbation which leaves the Hubble radius
(H;) during the inflationary epoch at a = a;. It will grow
to the size Hj,(a/a;) at a later epoch. We want to deter-
mine @; such that this length scale grows to L, just when
the dark energy starts dominating over matter; that is at
the epoch a = ay = ay(Qpw/Qa)". This gives Hy (ay =
a;) = Ly so that a; = (H/L\)(Qpm/€20)ae. On the other
hand, the inflation ends at a = a.q where a.,4/ao= Ty/
Tiehear Where e s the temperature to which the uni-
verse has been reheated at the end of inflation. Using
these two results we can determine the dynamic range of
CE to be

1/3
Gend _| _ Tolp Q, _
-1
4 T;'eheat H in QDM

= =107,
nT

reheat

Hiy

where we have used the fact that, for a GUTs scale infla-
tion with Egur = 10" GeV, Tieheat = Ecuts Pin = Ecur we
have 2H s Treheat = (31/2)"*(Ep/Egur) = 10°. For a Planck
scale inflation with 2TEH}1 Treneat = (1), the phases CE
and DF are approximately equal. The region in the quad-
rilateral CEDF is the most relevant part of standard cos-
mology, though the evolution of the universe can extend
to arbitrarily large stretches in both directions in time. It
is possible that this figure is telling us something regard-
ing the time translation invariance of the universe (‘the
perfect cosmological principle’) and — more importantly —
about the breaking of this symmetry, but it is not easy to
translate this concept into a workable theory.

Let us now turn our attention to few of the many attempts
to understand the cosmological constant. This is of course
a non-representative sample and a host of other approaches
exist in the literature™.
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Dark energy from a nonlinear correction term

One of the least esoteric ideas regarding the dark energy
is that the cosmological constant term in the FRW equa-
tions arises because we have not calculated the energy
density driving the expansion of the universe correctly.
The motivation for such a suggestion arises from the follow-
ing fact: The energy momentum tensor of the real uni-
verse, T,(¢, X) is inhomogeneous and anisotropic and will
lead to a very complex metric g,, if only we could solve
the exact Einstein’s equations G,[g] = «7,,. The metric
describing the large scale structure of the universe should
be obtained by averaging this exact solution over a large
enough scale, to get {g,). But what we actually do is to
average the stress tensor first to get {7, and then solve
Einstein’s equations. But since G,4[g] is nonlinear function
of the metric, {G[g]) # G.[{g)] and there is a discrepancy.
This is most easily seen by writing

G [ =X(T N +K (G (@)1 (Gl 2]

=k[T,,)+T," 1. (17
If — based on observations — we take the (g, to be the
standard Friedman metric, this equation shows that it has,
as its source, two terms: The first is the standard average
stress tensor and the second is a purely geometrical correc-
tion term 75" =% '(G.[{g)] — {G.s[g])) which arises be-
cause of nonlinearities in the Einstein’s theory that leads
to {Gulg]) # Gul[{g)]. If this term can mimic the cosmo-
logical constant at large scales, there will be no need for
dark energy! Unfortunately, it is not easy to settle this ques-
tion to complete satisfaction®. One possibility is to use
some analytic approximations to nonlinear perturbations
(usually called nonlinear scaling relations, see e.g. ref.
35) to estimate this term. This does not lead to a stress
tensor that mimics dark energy (Padmanabhan, unpublished)
but this is not a conclusive proof either way. We mention
this mainly because this problem deserves more attention
than it has got.

Unimodular gravity

Another possible way of addressing this issue is to simply
eliminate from the gravitational theory those modes which
couple to cosmological constant. If, for example, we have
a theory in which the source of gravity is (p + p) rather
than (p + 3p) in eq. (2), then cosmological constant will not
couple to gravity at all. (The nonlinear coupling of matter
with gravity has several subtleties; see e.g. ref. 36.) Un-
fortunately it is not possible to develop a covariant theory
of gravity using (p + p) as the source. But we can achieve
the same objective in different manner. Any metric g, can
be expressed in the form g, = f*(x)g.s such that det ¢ = 1
so that det g = f*. From the action functional for gravity
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1
A=——r0 f d*x(R—2A)-¢

1 A
= f d*xR\-g oo f d*xf (x)

(18)
it is obvious that the cosmological constant couples only to
the conformal factor . So if we consider a theory of gravity
in which f* = (—g)l/2 is kept constant and only g, is varied,
then such a model will be oblivious of direct coupling to
cosmological constant. If the action (without the A term)
is varied, keeping det g =-1, say, then one is lead to a
unimodular theory of gravity with the equations of motion
Ry — (1/d)g R = x(T,p — (1/4)g,,T) with zero trace on both
sides. Using the Bianchi identity, it is now easy to show
that this is equivalent to a theory with an arbitrary cos-
mological constant. That is cosmological constant arises
as an undetermined integration constant in this model®’.
Wahile this is interesting, we need an extra physical prin-
ciple to fix its value.

One possible way of doing this is to interpret the A
term in the action as a Lagrange multiplier for the proper
volume of the spacetime. Then it is reasonable to choose
the cosmological constant such that the total proper volume
of the universe is equal to a specified number. While this
will lead to a cosmological constant which has the correct
order of magnitude, it has several obvious problems. First,
the proper four volume of the universe is infinite unless
we make the spatial sections compact and restrict the
range of time integration. Second, this will lead to a dark
energy density which varies as £~ (corresponding to w =
—1/3) which is ruled out by observations.

Scale dependence of the vacuum energy

The conventional discussion of the relation between cos-
mological constant and vacuum energy density is based on
evaluating the zero point energy of quantum fields with
an ultraviolet cutoff and using the result as a source of
gravity. Any reasonable cutoff will lead to a vacuum energy
density p., which is unacceptably high. This argument,
however, is too simplistic since the zero point energy —
obtained by summing over the (1/2)A®, — has no observable
consequence in any other phenomena and can be subtracted
out by redefining the Hamiltonian. The observed non trivial
features of the vacuum state of QED, for example, arise
from the fluctuations (or modifications) of this vacuum
energy rather than the vacuum energy itself. This was, in
fact, known fairly early in the history of cosmological
constant problem and, in fact, is stressed by Zel’dovich®®
who explicitly calculated one possible contribution to fluctua-
tions after subtracting away the mean value. This suggests
that we should consider the fluctuations in the vacuum
energy density in addressing the cosmological constant
problem.
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If the vacuum probed by the gravity can readjust to
take away the bulk energy density pp ~ Lp*, quantum fluc-
tuations can generate the observed value ppg. One of the
simplest models® which achieves this uses the fact that,
in the semiclassical limit, the wave function describing
the universe of proper four-volume  will vary as Yo
exp(—idy) o< exp[—i(Aer /L3)]. If we treat (A/LF, ) as con-
jugate variables then uncertainty principle suggests
AA zL]% = A . If the four volume is built out of Planck
scale substructures, giving = NL, then the Poisson fluc-
tuations will lead to A = \/' L giving AA =Ly/A =
1/\/— ~ Hj. (This idea can be a more quantitative; see ref.
39)

Similar viewpoint arises, more formally, when we study
the question of detecting the energy density using gra-
vitational field as a probe. Recall that an Unruh-DeWitt
detector with a local coupling L; = M(T)0[x(7)] to the field
0 actually responds to {0|¢(x)0(»)|0) rather than to the field
itself*’. Similarly, one can use the gravitational field as a
natural ‘detector’ of energy momentum tensor 7, with the
standard coupling L = kh,,7™. Such a model was analysed
in detail in ref. 41 and it was shown that the gravitational
field responds to the two-point function {0|7,,(x)T..(3)[0).
In fact, it is essentially this fluctuations in the energy
density which is computed in the inflationary models’ as
the seed source for gravitational field, as stressed in ref. 13.
All these suggest treating the energy fluctuations as the phy-
sical quantity ‘detected’ by gravity, when one needs to
incorporate quantum effects. If the cosmological constant
arises due to the energy density of the vacuum, then one
needs to understand the structure of the quantum vacuum
at cosmological scales. Quantum theory, especially the
paradigm of renormalization group, has taught us that the
energy density —and even the concept of the vacuum
state — depends on the scale at which it is probed. The
vacuum state which we use to study the lattice vibrations
in a solid, say, is not the same as vacuum state of the
QED. Using this feature, it is possible to construct systems
in condensed matter physics42 wherein the quantity analogous
to vacuum energy density has to vanish on the average
because of dynamical reasons.

In fact, it seems inevitable that in a universe with two
length scale Ly, Lp, the vacuum fluctuations will contribute
an energy density of the correct order of magnitude ppg =
(papp)"%. The hierarchy of energy scales in such a universe
has*®* the pattern

2 4
11 (L 1 (L
=—t—| = | +—| 2| +

The first term is the bulk energy density which needs to
be renormalized away (by a process which we do not under-
stand at present); the third term is just the thermal energy
density of the deSitter vacuum state; what is interesting is

(19)
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that quantum fluctuations in the matter fields inevitably
generate the second term.

The key new ingredient arises from the fact that the
properties of the vacuum state depends on the scale at
which it is probed and it is not appropriate to ask questions
without specifying this scale. (These ideas have been de-
veloped more generally in ref. 44.) If the spacetime has a
cosmological horizon which blocks information, the natural
scale is provided by the size of the horizon, L,, and we
should use observables defined within the accessible region.
The operator H(< L,), corresponding to the total energy
inside a region bounded by a cosmological horizon, will
exhibit fluctuations AE since vacuum state is not an eigenstate
of this operator. The corresponding fluctuations in the en-
ergy density, Ap o< (AE)/Lj = f(Lp, L») will now depend on
both the ultraviolet cutoff Ly as well as L,. To obtain
APyac = AE/Li which scales as (LpLA)’2 we need to have
(AE) o< Lp*L}; that is, the square of the energy fluctua-
tions should scale as the surface area of the bounding surface
which is provided by the cosmic horizon. Remarkably
enough, a rigorous calculation® of the dispersion in the
energy shows that for L, > Lp, the final result indeed has
the scaling

(AE)? =¢; =& (20)

where the constant ¢, depends on the manner in which ultra-
violet cutoff is imposed. Similar calculations have been done
(with a completely different motivation, in the context of
entanglement entropy) by several people and it is known
that the area scaling found in eq. (20), proportional to L3,
is a generic feature®. For a simple exponential UV-cutoff,
¢ = (1/30m%) but cannot be computed reliably without
knowing the full theory. We thus find that the fluctuations
in the energy density of the vacuum in a sphere of radius
L, are given by

AE 9. Hi
A = o [P o A 21
pvac ]3\ P ~A G ( )

The numerical coefficient will depend on ¢, as well as the
precise nature of infrared cutoff radius (like whether it is
Ly or Ly/27, etc.). It would be pretentious to cook up the
factors to obtain the observed value for dark energy density.
It is a fact of life that a fluctuation of magnitude Ap,,, =
Hy/G will exist in the energy density inside a sphere of
radius H,' if Planck length is the UV cut off. One cannot
get away from it. On the other hand, observations suggest
that there is a py,. of similar magnitude in the universe. It
seems natural to identify the two, after subtracting out the
mean value by hand. Our goal was more towards explaining
why there is a surviving cosmological constant which satis-
fies ppr = (p App)l/2 which — in our opinion — is the problem.
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There is a completely different way of interpreting this
result based on some imaginative ideas suggested by
Bjorken’' recently. The key idea is to parametrize the
universes by the value of L, which they have. It is a fixed,
pure number for each universe in an ensemble of universes
but all the other parameters of the physics are assumed to
be correlated with L,. This is motivated by a series of argu-
ments in ref. 31 and, in this approach, p,, o Lf almost by
definition; the hard work was in determining how other
parameters scale with L,. In the approach suggested here,
a dynamical interpretation of the scaling p,, o Lf is given
as due to vacuum fluctuations of fields. We now reinterpret
each member of the ensemble of universes as having zero
energy density for vacuum (as any decent vacuum should
have) but the effective p,,. arises from the quantum fluc-
tuations with the correct scaling. One can then invoke
standard anthropic-like arguments (but with very significant
differences as stressed in ref. 31) to choose a range for the
size of our universe. This appears to be much more attractive
way of interpreting the result.

Finally, to be fair, this attempt should be judged in the
backdrop of other suggested solutions almost all of which
require introducing extra degrees of freedom in the form
of scalar fields, modifying gravity or introducing higher
dimensions etc. and fine tuning the potentials. At a fundamen-
tal level such approaches are unlikely to provide the final
solution.
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