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A new separation of variables method
for complex geometries
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A procedure has recently been discovered by which the
classical separation of variables method can be extended
to solve linear boundary value problems for complex
geometries. In brief, the procedure consists of embed-
ding the given complex geometry in a larger domain
on which complete sets of eigenfunctions exist. The latter
are then used to represent the field in the given complex
geometry. Since the eigenfunctions are not in general
orthogonal on the given boundary, the unknown coeffi-
cients are evaluated by a least squares procedure. The
details in a specific example, that of two-dimensional
heat conduction in a solid of complex shape, are given
so that the method can be easily understood and applied.
In this case the field satisfies Laplace’s equation with
given data on the boundary. Since the method is simple
and casy to apply, it provides an efficient, extremely
accurate and elegant alternative to brute force compu-
tation. It is hoped that the method will be taught to
college and university students who should have no
difficulty in grasping it.

PERHAPS the only fairly general method that all of us learn
in college, to solve linear boundary value problems, is the
‘method of separation of variables’!”?. This method is also
known as the ‘Fourier method’ or the ‘method of eigen-
function expansions’. The method hinges crucially on (i)
the variables separating out in the given coordinate system,
(i1) the existence of an infinite set of eigenfunctions for
the reduced, self-adjoint ordinary differential equation,
(iii) the orthogonality of the eigenfunctions permitting the
direct evaluation of the coefficients in the series expansion
that represents the solution, and (iv) the boundary data
being given on constant coordinate lines. The classical
method fails if any of these are violated and it is because
of these restrictions that the method is considered to be of
purely academic interest. Thus, even for linear problems
involving complex geometries, it is generally believed
that there is no alternative to direct computational methods
of solution.

We have recently discovered a way to overcome these
limitations, which now permits the method to be used easily
and effectively for complex geometries’. The method is
so simple that it can be taught to undergraduates and can be
used by practising engineers and scientists to solve linear
problems involving complex geometries. The purpose of
this communication is to give enough details in the solution
of a single problem so that anyone wishing to, can learn
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the method. It is particularly hoped that college and uni-
versity teachers will be motivated to teach the method as
a superior alternative to brute force computation, at least
for linear problems.

Consider steady, two-dimensional heat conduction in the
cup-cake-shaped solid shown in Figure 1. The boundary
of the complex shape is made up of straight segments AB,
DE and EA and the semi-circle BCD; the shape is sym-
metrical about the line CFG. Let AE be of length 2a and
DE of length b. The geometry is fully specified by a, b and
the angle ¢y. Let us assume that the temperature y(x) is
known on the boundary of the solid, i.e. y(x) = ¥(x) on the
boundary, where 9(x) is the given boundary temperature
distribution; the field then has to be determined in the interior
of the solid, in the domain D . In steady heat conduction,
the temperature field y(x) has to satisfy Laplace’s equation
in the interior, i.e.

2

Vay(x) =0 inD . (1)
One observes that there is no obvious coordinate system
in which all the boundary segments will be constant co-
ordinate lines. Thus the classical method of separation of
variables will not apply to this geometry. Normally, the pro-
blem would have to be solved by numerical conformal
mapping, a boundary integral type of method or by a direct
computational technique.

There are three key steps in the new method suggested
by us®: (1) embed the domain D with complex geometry
in a larger domain D * of simpler geometry, which has on

Steady two-dimensional heat conduction in a solid of com-

Figure 1.
plex shape. Given the temperature distribution on the boundary ABCDE of
the cup-cake-shaped domain D , it is required to determine the tempera-
ture W(x) in D . The rectangle O’A’B’C” is the embedding domain D *
with cartesian coordinate system (x", ¥"). The origin is at O".
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it a complete set of eigenfunctions, (2) write down the
field in the smaller domain D as an infinite series of the
members of the complete set of eigenfunctions of D *, and
(3) determine the unknown coefficients in the series expan-
sion by truncating it and using the method of least squares
to minimize the error on the given boundary data of D .
These simple steps will be illustrated here for the problem
considered in Figure 1.

It is well known that the rectangular geometry has nice
separable solutions for Laplace’s equation (eq. (1)). It is
therefore natural to embed the given domain D , in this
case ABCDE of Figure 1, in the larger dotted rectangle
O’A’B’C’, which will serve as the embedding domain D *.
As shown, the origin of the cartesian coordinate system
(', v") is at O, For completeness, let us derive the separable
solutions {¢,} to eq. (1) in D ’. First assuming that ¢(x’, y/')
vanishes on the vertical boundaries A’O” and B'C’, we try
O(x", ¥') ~ X(x")Y(y"); substitution into eq. (1) and separat-
ing the variables leads to X~'d*X/dx = Y ' ¥idy? = A7,
with candidate solutions ¢(x’, ") ~exp £ iAx exp £ Ay. Since
O(x", ¥") has to vanish on x” = 0, A,, it is easy to check that
the eigenvalues A, are given by A, = nn/h,, n =1, 2, ... and
that the eigenfunctions ¢,(x’, v'; A,) are given by ¢i(x’, '
Au) = sink,x exp £ A,p. It is possible to show that the set
{(]),f(x’, Vik),n=1,2,..}is a complete set on D ” in the
sense that this set can be used to represent the field satis-
fying eq. (1) in D ’, while taking on essentially arbitrary
boundary data on A’B” and O’C” and zero boundary data
on the vertical sides. In exactly the same way, the set
{(ﬁ:(x’, VW), n=1,2,..}, with (])A,T(x’, Vi W) = sinp,y
exp £ w,x and w, =nn/h, n=1,2,..,is a complete set
for arbitrary data on the vertical sides and zero data on the
horizontal ones. Together, the two sets {(]),f} and {(ﬁ: } can

represent essentially arbitary data on the whole boundary of

D"

Following the prescription, we now write the field in D
in terms of the complete set of eigenfunctions of D 7, i.e.
we write

W(x',_v’)=2[sin Aux {arpe MY + agye M y=201
n=l

+ 8in L, ¥ {@z,e M+ ay,e Mt ] (2)

where ay,, ay,, asy, and ay, are real scalars that have to be
determined from the given boundary data. The function
multiplying a,, in eq. (2) could as well have been written
as exp A, but the form chosen leads to smaller matrix
elements; however, this not important or essential. Note
that the eigenfunctions on the first line of eq. (2) belong
to the set {(lff}, while those on the second line belong to
the set {(l\A,T}.

We will now use the method of least squares to determine
the unknown coefficients to, in principle, any required
degree of accuracy. Truncate the series in eq. (2) to N
terms and write
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N
’ 2 . ’ 2 . ’ 2
W(X »V ): Zl‘/l(x YV )ulu +,/2(X i )UZH
n=|
N ’ ’ " ’ s 1
+./3(X »V )UJH +./4(X »V )‘14uh
where

Ay =sinh,xe Y| fy(x', ) = sind, x'e (=)

/1 (X’, .\,r’) = §in “”.\,r’c_ﬂu-" s /4 (X,, .\,r,) =gin ””.‘,r,c_Uu(/’r_-\' ),

(4)

One notes that now there are 4N real scalars to be deter-
mined from the given boundary data ¥(x). Distribute M
(M > 4N) points, not necessarily equi-spaced, on the
boundary of D and let V¥, k=1, 2, ... , M be the given
temperatures at these points. Similarly, let fi; = f1(x7, ¥4),
k=1,2, ..., M be the values of f|(x") at these points and
similarly for the other functions in eq. (4). We can then
define the error, ¢, at the kth point by

N
e == + Y {fikam + foxaom + freas + fawam}, (5
n=|

and the total error squared at all the M chosen points on
the boundary by

M
E2=Y e} =
k=1
u N 2 (6)
Z _ﬁ/r + Z ]‘./i/ruln + ,/‘?_/ru?_n + ,/_‘1/:‘1_1/1 +,/;4/ru4n lf
n=| n=|

One could also define the total error squared as an integral

of eq. (5) over the boundary, but the simple definition in

eq. (6) is adequate for our purposes. One can now regard

2 ~ . o
E* as a function of the 4N scalars, a,, @\, @z, 41y ... Qay
. 2 I

and ask what these should be in order that £ be a minimum.
o . o g 7y n

A necessary condition is that 0F"/da,; =0 forn=1, 2, 3, 4

and i = 1, 2, ... N. For example, with n = 1

B _ ¢ 5
= Z _(ﬁ/r +Z {./I/rulu +./2/ru?.u + ,/J/.'UJH +./4/ru4u:

day;
li k=1 n=1

S1i=0, i=12,.N.

(7)

Thus we have 4N linear algebraic equations for the 4N
real scalars and these can be solved by standard routines.
One would expect that as N becomes larger and larger,
the error will decrease and this is what is found. As long
as M > 4N, the exact value of M is unimportant, espe-
cially as N and M become large. However, it appears that
for better accuracy for small &, it is a good idea to keep
M to be two to three times the number of unknowns, in
this case 4N.
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Figure 2 shows the results of calculations done by the
above procedure for a particular choice of boundary data
and geometry. In this case the geometrical parameters are
a=10.25,b=10.75 and ¢, = 60°. Moreover, since we wish
to demonstrate the accuracy of the method, we choose a
field that is known exactly and use the resulting data on
the boundary to test the efficacy and accuracy of the pro-
posed method. The temperature field is given exactly by

y(r, 0) = ¥ sin no, (8)

Figure 2. Temperature distribution y(x) in ) when the exact solution
is r* sin 20 with the origin of the polar coordinate system located at O
in Figure 1.« = 0.25, b =0.75, ¢y = 60°, , the exact solution
W(r, © =r’ sin 20); - - - - - SN =20 e ,N=5;
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Figure 3. Temperature distribution in the solid when the exact field is
M sin30and a = 0.15, b = 1.5, ¢g = 70°. The exact field and the eigen-
function expansion with N = 10 are indistinguishable.
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where the origin of the polar coordinate system (r, 0) is
located at O, the mid-point of BF, as shown in Figure 1.
Needless to say, v as defined in eq. (8) satisfies Laplace’s
equation (eq. (1)). Now, if (x;, v) is a point on the boun-
dary of D , the boundary data O(x;, y,) are given by just
evaluating the right-hand side of eq. (8) at the point
(x5 Vo). We can then proceed with the eigenfunction ex-
pansion procedure as described above.

In Figure 2 the given field corresponds to the case
where n =2 in eq. (8), and the computed fields with N = 2,
5 and 10 are shown with M = 10N in each case. On this
scale the computed fields, especially for the larger N, will
be insensitive to the exact choice of M. Figure 2 shows
that even with N as small as 5, the overall field is reason-
ably described by the eigenfunction expansion, while
with N = 10 the results are indistinguishable on this scale.
One can obtain a more quantitative appreciation of the
increase in accuracy with increasing N from the data in
Table 1, which shows the magnitude of the maximum error
on the boundary, ¢€,, as a function of N. While the maxi-
mum error is already as low as about 0.27 x 10™* when
N = 10 it reduces drastically to 0.19 x 10~ when N = 50;
such accuracies are not achievable by any other method,
certainly not with as little effort. The calculation with
N = 50, including the computation of the field at 100 x
100 field points takes 3 s on a Pentium III running at
866 MHz. Figure 3 shows the results for an ice-cream
cone-shaped geometry; here the field is given by eq. (8)
with n = 3. The results for N = 10 are once again indistin-
guishable from the exact solution.

The example considered here was chosen for its simpli-
city so that the details of the method would be transparent.
However, the same method applies, with exactly the same
steps, to three-dimensional problems and to other linear
operators’. Thus the eigenfunction method is a powerful
one for solving linear boundary value problems. It is con-
ceptually simple, the field equations are satisfied exactly,
it is fast and can be extremely accurate, it has the poten-
tial to yield the asymptotic nature of the field, it does not
require any gridding or panelling and it permits one to
store the details of the field in a relatively small number
of coefficients. The only weakness of the method till now
was that its use was restricted to rather simple geometries,
not to those of practical importance. With the present ex-

Table 1.
dary €, as a function of N, the number of terms in the
series for y(x’, v")

Magnitude of maximum error on the boun-

N Number of scalars £

I 4 0.518

2 8 0.164

5 20 0.497 x 107!
10 40 0.268 x 107
25 100 0.105 x 107
50 200 0.190 x 1077
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tension to complex geometries, the scope of the method
has been extended greatly, making it the method of choice
to solve linear boundary value problems on complex geo-
metries.
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Is there a need for variable density
option in making combined mass
correction to gravity data acquired
over high relief?
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Traditional gravity data processing involves terrain
and Bouguer corrections with uniform density. How-
ever, inclusion of variable densities honouring surface
geology in such corrections is a long-felt need. This
matter assumes fundamental importance for gravity
data acquired over high relief. So, improved Bouguer
and terrain correction scheme is proposed and its utility
is demonstrated on a gravity profile along Mahe—Sumdo—
Tso Morari of Ladakh Himalaya.

A maximum difference of about 50-70 mGal in the
final Bouguer anomaly is observed between data processed
through normal procedure with uniform Bouguer
density (= 2.67 g/cm") and those proposed with variable
density. This underlines the importance of the proposed
scheme.

THE purpose of making corrections to gravity data is to
arrive at Bouguer anomaly free of non-geologic effects that
are unavoidable components of the basic measurement. In-
depth analysis of gravity data corrections is clearly missing
in basic English language textbooks'. In recent years, La
Fehr® and Talwani® have dealt with the problem of making
Bullard B correction. The method proposed by Banerjee®
for gravity data acquired over high relief uses a digital
terrain model and constant Bouguer density.

*For correspondence. (e-mail: rgsslfes@iitr.ernet.in)
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Northwestern Himalaya is characterized by high eleva-
tions and severely tectonized zones with steep dips, which
pose challenging problems for geophysical data processing
in general and gravity data, in particular. A new improved
gravity data reduction method is proposed, involving
variable density information. The effectiveness of the pro-
posed procedure is illustrated on a gravity profile along
Mahe—Sumdo-Tso Morari of Ladakh Himalaya.

The conventional land Bouguer gravity, Aggp based on sin-
gle constant density for combined mass correction is given
by

Agp = gops — LCEFACF BC+ TC, (D)
where gu, refers to observed gravity reading, LC is latitude
correction, FAC is free-air correction, BC is Bouguer cor-
rection and TC is terrain correction.

To incorporate the terrain correction term with variable
density option in eq. (1), let us adopt Hammer’s template
for the terrain around the gravity station covered by N
circles of radii R; (i = 1, n for the inner zone and i=n+ 1,
N for the outer zone), with m(i) compartments the inner
zone (j =1, m(i)) and M(i) compartments in the outer zone
(j =1, M(i)). Then TC in eq. (1) can be expressed as

n m(i) N M)
=YY fipy+ Y Y sio, (2)
i=l j=l i=n+l j=1

where p;; and ¢ are the variable and constant Bouguer

densities of the inner and outer zones (Figure 1) respecti-
: . : : LS

vely, and following Grushinsky and Sazhina’, one can have

1= %(m G((Rivt — R)+ SR +h2) —sqri(R2, + h2))),
(3)
where

c m(i),i=1n, for the inner zone @)
M@G),i=n+1, N, for the outer zone.

hy; are elevation differences of the ijth curvilinear prism
of topography with respect to station elevation d. (7 is the
universal gravitational constant. It is to be noted that the
topographic masses around a gravity station delimited by
n zones of Hammer’s chart in the first summation are for
a variable density inner zone and the remaining (N-#) zones
in the second summation constitute the outer zone with a
constant density ¢ respectively.

So far, we have made necessary modifications in terrain
correction term for the case of variable density option.
However, this situation also demands a modification of
Bouguer correction term.

BC in the absence of variable densities is given by

BC =2nGaod. (3)



