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There are several interacting spin systems which have a
gap in their spin excitation spectra. The gap does not
occur due to anisotropies present in the system but is
quantum mechanical in originn We give a brief over-
view on different types of spin gap (SG) antiferro-
magnets, the models proposed to describe their physi-
cal properties and experimental realizations of such
systems. Our special focus is on exactly-solvable models
and rigorous theories which provide the correct physical
picture for the novel phenomena exhibited by SG systems.

THE last decade has witnessed an unprecedented research
activity on undoped and doped quantum antiferromagnets
(AFMs) in low dimensions. Several new materials exhibi-
ting a variety of novel phenomena have been discovered.
The experimental effort is closely linked with theoretical
ideas. The field of low-dimensional quantum magnetism
provides a fertile ground for rigorous theory. Powerful
techniques like the Bethe Ansatz (BA)1 and bosonization
are available to study ground and excited state properties.
Models of interacting spin systems are known for which the
ground state and in some cases their lowlying excitation
spectra are known exactly. Theorems, furthermore, offer
important insight into the nature of the ground and the
excited states. The knowledge gained provides impetus to
look for real materials so that experimental confirmation
of theoretical predictions can be made. In this review, we
discuss a special class of low-dimensional AFMs, the so-
called spin gap (SG) systems, to illustrate the rich interplay
between theory and experiments. The review is not meant
to be exhaustive but focuses on some broad classes of pheno-
mena exhibited by SG systems.

The SG AFMs are characterized by a gap in their spin &-
citation spectra. The magnitude of the gap, A, is the dif-
ference between the energies of the lowest excited state and
the ground state. The excitation spectrum of an AFM is
said to be gapless if A=0. In general, a gap appears in the
spin excitation spectrum if some kind of anisotropy is
present in the system. In SG AFMs, however, the gap is
purely quantum mechanical in origin and cannot be as-
cribed to any anisotropy. The basic spin—spin interactions
in AFMs are described by the Heisenberg Hamiltonian
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where S; is the spin operator located at the lattice site i and
Jy denotes the strength of the exchange interaction. Real
magnetic materials are three-dimensional (3d) but behave
effectively as low-dimensional systems if the dominant
exchange interactions are intra<hain (1d) or intra-planar
(2d). For most materials, the exchange interaction is con-
fined to only the nearest-neighbour (n.n.) spins on the lattice.
Also, Jys have the same magnitude J for all the nn. nter-
actions. There are, however, spin systems in which further-
neighbour interactions cannot be ignored and the exchange
interaction strengths are inhomogeneous in character. In the
next section, we discuss some possible origins of SG, the
models proposed to describe such systems and experi-
mental evidence for different mechanisms of SG.

Origins of spin gap

SG AFMs have spin-disordered ground states, i.e. the spin-
spin correlations in the ground state are short-ranged. The
ground states, in the absence of long range magnetic order,
can broadly be described as quantum spin liquids (QSLs).
The spin liquids are distinct from simple paramagnets, in
certain cases one can define novel order parameters which
have non-zero expectation values in the QSL states. For-
mation of such states is favoured by quantum fluctwations,
the effect of which is prominent in low dimensions and
for low values of the spin. In experiments, the presence of
the gap A is confirmed through measurement of properties
like susceptibility, %, which goes to zero exponentially at
low T as y~exp(-AkgT). Some well-known examples of
SG AFMs are: spin-Peierls (SP) systems, AFM compounds
consisting of weakly coupled spin dimers, frustrated spin
systems, spin ladders and Haldane gap (HG) AFMs. SP
compounds are historically the first examples of magnetic
systems eshibiting a SG. The SP transition was originally
observed in some organic compounds. In 1993, Hase et al?
obtained the first experimental evidence of the SP transi-
tion in an inorganic compound, CuGeQ;. The SP transition
generally occurs in quasi-one dimensional (1d) AFM spin
systems with half-odd integer spins and is brought about
by spin-phonon coupling. Below the SP transition tempe-
rature 7gp, a periodic deformation of the lattice sets in
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such that the distances between neighbouring spins are no
longer uniform but alternate in magnitude. This results in
an alternation, J(1+ §) and J(1-9), in the strengths of the
exchange interaction strengths. The ground state is
dimerized in which singlet pin pairs occupy the links with
enhanced exchange couplings. The SP ground state is spin
disordered and a finite energy gap exists in the S=1 spin
excitation spectrum.

Some AFM compounds can be described as crystalline
networks of spin dimers. Well-known examples of such
systems are the compounds ACuCls (A=K, Tl) in which
a spin dimer arises from two antiferromagnetically coupled
Cu”" ions™. The dimer ground state i a spin singlet with
total spin S=0: The excited triplet state with total spin
§=1 is separated from the ground state by an energy gap.
The excitation created on a particular dimer propagates
through the network of dimers due to the weak nter-dimer
exchange coupling.

nn.

Frustrated spin systems

Quantum fluctuations in a spin system are enhanced due to
the presence of frustration in the system. Frustration implies
a conflict in minimizing the exchange interaction ener-
gies associated with different spin pairs. Such conflicts
arise mainly due to lattice topology and the presence of
competing  further—neighbour interactions’. AFM systems
with an odd number of bonds in the unit cell of the underly-
ing lattice are frustrated spin systems. Examples include
the triangular, kagomé, pyrochlore and FCC lattices. Con-
sider three Ising spins located at the vertices of a triangu-
lar plaquette and interacting antiferromagnetically with
each other. The energy of an interacting spin pair is mini-
mized when the spins are antiparalel. The three interact-
ing spin pairs cannot, however, be simultaneously made
antiparallel so that one pair is in the parallel spin configu-
raton in the lowest energy state. Such conflicts are absent
when the elementary plaquette of the lattice contains an
even number of bonds as in the case of the square lattice.
Determination of the ground state of the AFM Heisenberg
exchange interaction Hamiltonian (eq. (1)) on various latti-
ces poses a formidable theoretical problem. The task becomes
simpler if the spins are treated as classical vectors, ie., the
magnitude of spins §— oo, The energy of a triangle of
spins is given by

E = 5(Si+82+83)" (57 +53+ S})]. @)

The ground state, ie. the minimal energy spin configura-
tions are obtained for Stwut=S1+S2+8S3:=0. In the case
of the full triangular lattice, the classical ground state has
a three-sublattice order with each elementary plaquette of
spins satisfying the constraint Sit=0. In the case of the
kagomé lattice, which is constructed out of triangular
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plaquettes, the classical ground state is infinitely degen-
crate’. In the first case, quantum fluctuations do not fully
destroy the order in the ground state but reduce the sub-
lattice magnetization significantly from its classical value.
Recent calculations show that the :% Heisenberg
AFM (HAFM) Hamiltonian on the triangular lattice has
long range order (LRO) in the ground state”®. A rigorous
proof of the existence of LRO is, however, still missing.
Experimental realizations of the triangular lattice HAFM
include VCla, VBr2, (GEu, NaNiOa, etc.’. In the case when
the classical ground state is highly degenerate, ie. spin-
disordered, thermal/quantum fluctuations may select a subset
of states as ground states leading to new forms of spin
order. This is the phenomenon of ‘order from disorder’"’
Another possibility is the opening up of a gap in the spin
excitation spectrum. The § :% HAFM on the kagomé lat-
tice appears to be a SG system with a singlet-triplet gap
in the spin excitation spectrum. An interesting feature of
the SG system is the existence of a large number of sin-
glet excitations in the gap, the number of which is propor-
tional to (1.15)", where N is the number of sites in the

is not affected by the presence of singlet excitations but
the specific heat possibly has a powerdaw dependence,
C,o< T% due to contributions from the singlets. An ex-
perimental realization of a S= % HAFM on the kagomé
lattice is yet to be obtained. The compounds SrCroGai019
is an example of a kagomélattice AFM with S= % The
dominant contribution to the low temperature specific heat
of this compound appears to come from the singlet states.

The S= % Ji—£ model in 1d, describing the Majumr
dar—Ghosh (MG) chain’, is the first example of a frustrated
quantum spin model with furtherneighbour interactions
for which the ground state can be determined exactly. The
Hamiltonian with periodic boundary conditions (PBC) is
given by

N N
Hya =AY Si-Si+7) SiSia, 3
i=l i=l

where Ji and A are the nn and next-nearest-neighbour
(nnn) exchange interaction strengths. The exactly solvable
1

MG point corresponds to o1 = 5. The exact ground state

is doubly degenerate and the ground states are

o1 =[12][34][56] ... [N— 1N],
2= [23][45][67] ... [N1] @

where [/n] denotes a singlet spin configuration, ! (o)
B(m)— B(Houm)), for spins located at the lattice sites 2l and
m. The up and down spin states are denoted as o and B. A
singlet state is also known as a valence bond (VB). The
excitations in the model can be described in terms of scat-
tering spin-(1/2) defects acting as domain walls bet ween
the two exact ground states'*. The scattering states form a
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continuum, the lowest branch of which is separated from
the ground state by a gap. The MG chain is thus a SG
AFM. The SG phase survives for o=.h\J| greater than a
critical value ofr ~0:2411. For 0< o <0, a gapless phase
is obtained. If the nn. exchange interactions are alternating
in strength, as in a SP system, the ground state is nonde-
generate with the VBs forming along the stronger bonds.
The MG Hamiltonian has been used to study the proper-
ties of the SP compound CuGeOs. A large number of studies
have been carried out on the frustrated Ji—J2 and J -
J—J; models in 2d, where .5 denotes the strength of the
diagonal exchange couplings and J; that of n.nn. interac-
tions in the horizontal and vertical directions. The most
general model studied so far is the Ji—J~—-h-Ji—Js
model”. Ji and J5 are the strengths of the knight’smove-
distance-away and further-neighbour diagonal exchange
interactions respectively (Figure 1). The four columnar dimer
(CD) states (Figure 2) are the exact eigenstates of the J; —
J—h—J—Js Hamiltonian for the ratio of interaction
strengths

1.1
Jyih Sy Jyi =111 :1=—.=—.=. 5
IR Y VR 3y )]

ro|—

Each dotted line in Figure 2 represents a VB, ie. a singlet
spin configuration. There is no rigorous proof as yet that
the CD states are the exact ground states though approxi-
mate theories tend to support the conjecnlre16. One can,
however, prove that any one of the CD states is the exact
ground state when the dimer bonds are of strength 77 and
the rest of the exchange interactions are of strengths as
specified in eq. (5). The excitation spectrum of the model
is separated from the ground state by a gap.

The Shastry—Sutherland (SS) model'” is an example of
a frustrated SG AFM in 2d. Figure 3, shows the lattice on
which the model is defined. The nn. and diagonal exchange
interactions are of strengths Ji and .- respectively. For
Jilh less than a critical value =0.7, the exact ground state
consists of singlets along the diagonals. At the critical
point, the ground state changes from the gapped disordered
state to an antiferromagnetically ordered gapless state. The
AFM compound SrCux(BOs): is an experimental realization

(i) (i) (iii)

Figure 1.

of the SS model'®. Triplet excitations in the model are
found to be almost localized. A single triplet excitation can
propagate in the SS lattice only at the sixth order pertur-
bation in Ji/h.

Spin ladders

Spin ladders constitute one of the most wellknown examr
ples of SG AGMs. The simplest ladder model consists of
two chains coupled by rungs (Figure 4). In general, the
ladder may consist of n chains. In the spin ladder model,
each site of the ladder is occupied by a spin (usuvally of
magnitude %) and the spins interact via the HAFM ex-
change interaction Hamiltonian (eq. (1)). The nn. intra
chain and rung exchange interactions are of strengths J
and J respectively. When .;=0; one obtains two decou-
pled AFM spin chains for which the excitation spectrum
is known to be gapless. For all Jg//>0; a gap opens up in
the spin excitation spectrumlg. The result is easy to under-
stand in the simple limit in which the exchange coupling
Jr along the rungs is much stronger than the coupling along
the chains. The intra-chain coupling in this case may be
treated as a perturbation. When J=0; the exact ground
state consists of singlets along the rungs. The ground state
energy is —(3;N4), where N is the number of rungs in
the ladder. The ground state has total spin S=0. In first
order perturbation theory, the correction to the ground state
energy is zero. An §=1 excitation may be created in the
ladder by promoting one of the rung singlets to the S=1
triplet state. The weak coupling along the chains gives
rise to a propagating S=1 magnon. In first order pertur-
bation theory, the dispersion relation is

o(k)= Jr + Joosk (6)

where £ is the momentum wave vector. The SG is given by
A=ow(n)=Jr-J @]

The two-spin correlations decay exponentially along the
chains showing that the ground state is a QSL. The family

o ¢ 0O 0.0
Gl BH8 O

6 6 0 o0 °
(iv) (v)

Five types of interaction in the J; —J,—J;—J, —.J% model The successive interactions are

(i) n.n., (ii) diagonal, (iii) n.n.n., (iv) knight’s-move-distance-away and (v) firther—neighbour—diagonal.
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Figure 2. Four columnar dimer states. The dotted line represents a
valence bond, i.e. a singlet spin configuration.
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Figure 3. The Shastry-Sutherland model. The nn. and diagonal ex-
change interaction strengths are .J; and % respectively.
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Figure 4. A two-chain spin ladder.

of compounds Sr, 1Cu,+10s, consists of planes of weakly
coupled ladders of (:+ 1)12 chaing”®. For n=3 and 5, one gets
the two-chain and three-chain ladder compounds SrCu203
and SroCwOs respectively. The first compound is a SG
AFM while the second compound has properties similar
to those of the HAFM Hamiltonian in 1d, which has a gp-
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less excitation spectrum. The experimental evidence is
consistent with the theoretical prediction that in an »-
chain ladder, the excitation spectrum is gapped (gapless)
when n is even (odd)lg. Bose and Gayen21 have studied a
two-chain ladder model with frustrating diagonal couplings.
The intra-chain and diagonal couplings are of equal stren-
gth J For Jp>2J, the exact ground state consists of sing
lets along the rungs with the energy Ey;=-(3&kN/4). An
excitation can be created by replacing one of the singlets
by a triplet. The triplet excitation is localized and sepa-
rated by an energy gap from the ground state. Xian™ later
pointed out that as long as (Jrl)> (JR)e= 1401, the
rung dimer state is the exact ground state.

Ladders provide a bridge between 1d and 2d many body
systems and are ideally suited to study how the electronic
and magnetic properties change as one goes from a single
chain to the square lattice limit. The significant interest in
2d many body systems is due to the unconventional proper-
ties of the CuO; planes in doped cuprate systems. The latter
exhibit high temperature superconductivity in appropriate
ranges of dopant concentration. Many of the unusual prop-
erties of the cuprate systems arise due to strong correla-
tion effects. Ladders are simpler systems in which some
of the issues related to strong correlation can be addressed
in a rigorous manner. Doped ladder models are toy models
of strongly correlated systems. In these systems, strong
Coulomb correlations prohibit the double occupancy of a
site by two electrons, one with spin up and the other with
spin down. In a doped spin system, two processes are in
competition: hole delocalization and exchange energy mini-
mization. The latter is minimized in the antiferromagneti-
cally ordered Néel-type of state. A hole moving in such a
background gives rise to parallel spin pairs which raise
the exchange interaction energy of the system. The ques-
tions of interest are: whether a coherent motion of the
holes is possible, whether two holes can form a bound state
and superconducting (SC) pairing correlations develop,
etc. These issues are of significant relevance in the context
of doped cuprate systems in which charge transport occurs
through the motion of holes. In the SC phase, the holes
form bound pairs with possibly d-wave symmetry. Several
proposals have been made so far on the origins of hole
binding but the actual binding mechanism is still contro-
versial®. The doped cuprate systems exist in a ‘psando-
gap’ phase before entering the SC phase. In fact, some of
the cuprate systems also exhibit a SG. The two-chain
AFM ladder systems are SG systems and it is of interest
to study how the gap evolves on doping. The possibility
of binding of hole pairs in a two-chain ladder system was
first pointed out by Dagotto et al®. In this case, the bind-
ing mechanism can be understood in a simple physical
picture. Again, consider the case Jr>J, ie. a ladder with
dominant exchange interactions along the rungs. In the
gound state, the rungs are mostly in singlet spin configu-
rations. On the introduction of a single hole, a singlet
spin pair is broken and the corresponding exchange inter-
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action energy is lost. When two holes are present, they
prefer to be on the same rung to minimize the loss in the
exchange interaction energy. The holes thus form a bound
pair. In the more general case, detailed energy considera-
tions show that the two holes tend to be close to each other
effectively forming a bound pair. For more than two
holes, several calculations suggest that considerable SC
pairing correlations develop in the system. The supercon-
ducting state can be achieved only in the bulk limit. Theo-
retical  predictions motivated the search for ladder
compounds which can be doped with holes. Much acite-
ment was created in 1996 when the doped ladder com-
pound25 Sri4,CaCwsO41 was found to become SC under
pressure at x=13.6. The transition temperature 7. is
~12K at a pressure of 3GPa: As in the case of cuprate
systems, bound pairs of holes are responsible for charge
transport in the SC phase. Experimental results on doped
ladder compounds point out strong analogies between the
doped ladder and cuprate systems26. Bose and Gayen21’27’28
have derived exact, analytical results for the ground state
energy and the low-lying excitation spectrum of the frus-
trated ¢—J ladder model doped with one and two holes.
The undoped frustrated ladder model has already been de-

scribed. The ¢—J Hamiltonian describing the ladder is
given by
Hiy== Y (8¢ +HC)+Y J;S;.S;. ®)
1),0 j

The ¢ and ¢, are the electron creation and annihilation
operators which act in the reduced Hilbert space (no double
occupancy of sites),

crx=chl-nis), Cog=cs(l-n;5), O

where ¢ is the spin index and n, » are the occupation
numbers of the ith and jth sites. The first term in eq. (8)
describes the motion of holes. The hopping integral f; has
the value ¢z for hole motion along the rungs and the value
t for both the intra-chain nn. and diagonal hops. The latter
assumption is crucial for the exact solvability of the eigen-
value problem in the one and two hole sectors. Though
the model differs from the standard ¢—J ladder model®™
(diagonal couplings missing in the latter model), the spin
and charge excitation spectra exhibit similar features. For
the frustrated ¢—J ladder, the dispersion relation of the
two-hole bound state branch can be obtained exactly and
analytically. The exact two-hole ground state is a bound
state with centre of mass momentum wave vector K=0
and d-wave type symmetry. The ladder exists in the Luther—
Emery phase in which the spin excitation is gapped and the
charge excitation gapless. There is no spin-charge sepaa-
tion, a feature associated with Luttinger liquids in which
both the spin and charge excitations are gapless. In the exact
hole eigenstates, the hole is always accompanied by a
spin-%. The hole-hole correlation function can also be cal-
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culated exactly. When Jk>J, the holes of a bound pair are
predominantly on the same rung. For lower values of Jr
the holes prefer to be on nn rungs so that energy gain
through the delocalization of a hole along a rung is possi-
ble. The novel phenomena exhibited by undoped and
doped spin ladders have motivated a large number of theo-
retical studies. Several ladder compounds have been dis-
covered/synthesized to date. Detailed information on the
theoretical and experimental investigations may be obtained
from two exhaustive reviews on ladders ',

Haldane gap antiferromagnets

We have so far been discussing SG systems with halfodd
integer spins. From the Lieb-Schultz-Mattis (LSM)31 theo-
rem one can show that the half-odd integer spin HAFM chain
has a gapless excitation spectrum in the infinite chain
length limit. The theorem does not extend to integer spin
chains. Haldane®, based on his analysis of the nonlinear
6 model mapping of the large S HAFM Hamiltonian in
1d, conjectured that the HAFM spin chains with integer
spins have a gap in the excitation spectrum, i.e. they are
SG AFMs. The ground state of an integer spin chain is
disordered and the spin-—spin correlation function has an
exponential decay. Haldane’s conjecture has now been
verified both theoretically and experimentally33. The spinl
HAFM Hamiltonian has the same ground state features as
the spin-1 Affleck, Kennedy, Lieb, Tasaki (AKLT) Hamil-
tonian for which the so-called valence bond solid (VBS)
state is the exact ground state. Consider a 1d lattice each site
of which is occupied by a spin-l: A spin-1 can be consile-
red to be a symmetric combination of two spin—% ’s. In the
VBS state, each spin-% component of a spinrl forms a
singlet (VB) with a spin—% at a neighbouring site. The
AKLT Hamiltonian is a sum over projection operators
onto spin 2 for successive pairs of spins, i.e.

HAKLT:ZPZ(Si+Si+1)- (10)

The presence of a VB between each neighbouring pair of
sites implies that the total spin of each pair of spins can-
not be 2. Thus H,xpr acting on Wy, the wave function
of the VBS state, gives zero. The eigenvalues of the pro-
jection operator being positive, Wyps is the ground state
of Huxr with eigenvalue zero. The VBS state is spin-
disordered with an exponentially decaying spin-spin cor-
relation function. One can, however, define a non-local
string order parameter which has a non-zero expectation
value in the VBS state’*. The explicit form of the AKLT
Hamiltonian is given by

HAKLT=Z[%(Si-smﬂ%(Si-si+1)2+ﬂ . (1)
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The excitation spectum of Haxkir cannot be determined
exactly. Variational calculations show the existence of a
gap in the excitation spectrum. Several Haldane gap (HG)
AFMs have been discovered so far. These include the S=1
compound CsNiCls (ref. 33), Ni(GHsN2)2NO2  (ClO4)
(NENP) (ret. 33), Y2BaNiOs (ref. 35) and the S=2 comr
pound  (2,2-bipyridine)trichloromanganese  (Ill),  MnCls
(bipyridille)36. Experiments carried out on these compounds
show that the VBS state provides the correct physical pic-
ture for the true ground state”.

The doped spinrl compound Y>..Ca,BaNiOs provides an
example of a QSL in 1d*. The parent compound YBaNiOs
is a charge transfer insulator containing Ni* (S=1) chains.
The ground state of the system is spin-disordered and the
spin excitation spectrum is separated by the HG from the
ground state. The compound is doped with holes on eplac-
ing the off-chain Y’ ions by Ca®" ions. The holes mostly
appear in oxygen orbitals along the NiO chains. There is
no evidence of metal-insulator transition but the dc-resisti-
vity pac falls by several orders of magnitude. This indicates
that the holes are not fully mobile but delocalized over
several lattice spacings. Inelastic neutron scattering (INS)
experiments reveal the existence of new states within the
HG. Several studies have been carried out to explain the
origin of the sub-gap states®’. A recent neutron scattering
experiment38 provides evidence for an incommensurate
double-peaked structure factor S(g) for the sub-gap states.
The INS intensity is proportional to the structure factor.
For the pure compound, the structure factor S(g); near the
gap energy of 9 MeV, has a single peak at the wave vec-
tor g=7 indicative of AFM correlations. For the doped
compound, S(g) has an incommensurate double-peaked
structure factor, for energy transfer w~3-7MeV, with the
peaks located at g=m tdg. The shift dg is found to have
a very weak dependence on the impurity concentration x,
for x in the range xe [0.04, 0.14]. Evidence of incom-
mensurate peaks has also been obtained in the under-
doped metallic cuprates. The peaks are four in number
and occur at (m+8¢g, m) and (r, T* &). The crucial diffe-
rence from the nickelate compound is that &g is proportio-
nal to the dopant concentration x. The incommersurability
has been ascribed to inhomogeneous spin and charge ader-
ing in the form of stripes ¥ Malvezzi and Dago‘rto39 have
provided an explanation for the origin of spin incom-
mensurability in the holedoped S=1 nickelate compound.
They have shown that a mobile hole generates AFM cor-
relations between the spins located on both sides of the
hole and this is responsible for the spin incommensurabi-
lity seen in experiments. Xu et al*® have given a different
explanation for the origih of incommensurability. The
holes doped into the QSL ground state of the S=1 chain
are located on the oxygen orbitals and carry spin. They
induce an effective ferromagnetic interaction between the
Ni spins on both sides. The incommensurate peaks arise
because of the spin density modulations developed around
the holes with the size of the droplets controlled by the
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correlation length of the QSL. Bose and Cha‘ctopadhyay40
have developed a microscopic theory of the origin of spin
incommensurability in keeping with the suggestions of
Xuetal.

Quantum phas e transitions

A quantum phase transition (QPT) occurs at 7 =0 and brings
about a qualitative change in the ground state of an inter-
acting many body system at a specific value gc of some
tuning parameter g. Examples of tuning variables include
magnetic field /4, pressure and dopant concentration. The
origih of QPTs lies in quantum fluctuations just as ther-
mal fluctuations drive thermodynamic phase transitions.
In the case of second order thermodynamic phase transi-
tions, the critical point is characterized by scale invari-
ance and a divergent correlation length. Free energy and
the different thermodynamic functions become non-analytic
at the critical temperature 7 =7,. The quantum critical point
is also associated with scale invariance and a divergent
correlation length with quantum fluctuations substituting
for thermal fluctuations. The ground state energy be-
comes non-analytic at the critical value g. of the tuning
parameter. If one of the phases is gapped, the gap goes to
zero in a power-law fashion as g — g. Quantum and ther-
mal fluctuations are equally important in the so-called
quantum critical regime extending into the finite7 part of
the T versus g phase diagram. The macroscopic physical
properties in this regime are in many cases independent
of microscopic details. A large number of theoretical and
experimental studies have been carried out on QPTs in
condensed matter systems“. Here we focus on a few spe-
cific examples of QPTs in SG AFMs. Organic spin ladder
compounds provide ideal testing grounds for theories of
QPTs. Consider the phase diagram of the AFM two-chain
spin ladder in the presence of a magnetic field #. At 7=0
and for 0<h <h,,, the ladder is in the SG phase. At & =he,
there is a transition to the gapless Luttinger liquid phase
with glshc, = A, where g is the Landé splitting factor, g the
Bohr magneton and A, the magnitude of the SG*. At an
upper critical field /,, there is another transition to the fully
polarized ferromagnetic state. Both /c,, and /e, are quantum
critical points. The compound (CsHi2N)2CuBry has been
identified as a S=1/2 two-chain spin ladder in the strong
coupling limit. J&=133K and J=38K with A, ,=66T
and /i, = 14.6 T®. The magnetization data exhibit univer-
sal scaling behaviour in the vicinity of A, and /,, consis-
tent with theoretical predictions. In the gapless regime
hey <h <he,, the ladder model can be mapped onto an XXZ
chain, the thermodynamic properties of which can be calcu-
lated exactly by the BA. The theoretically computed
magnetization M versus magnetic field h curve is in excel-
lent agreement with the experimental data. Other organic lad-
der compounds exhibiting QPTs are (5IAP)2CuBu.2H,0
(ref. 44) and Cw(CsH12N2)2Cly (ref. 45). For inorganic spin
ladder systems, the value of /%, is too high to be experimen-
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tally accessible. The synthesis of organic ladder compounds
has paved the way for experimental observation of QPTs.

Another notable example of experimentally observed QPTs
is that of field-induced 3d magnetic ordering in low-dimen-
sional SG AFMs, KCuCls (ref. 3) and TICuCk (ref. 4) which,
as described earlier, consist of networks of dimers. The dimer
ground state is a singlet for #=0. The triplet (S=1) excita-
tion is separated from the singlet ground state by an @-
ergy gap, A Application of an external magnetic field h
leads to Zeeman splitting of the triplet excitation into three
components: S;=+1, 0, -1. At a critical external mag-
netic field #,, the lowest triplet component becomes ener-
getically degenerate with the ground state. This results in
a QPT at h=h,, to a 3d magnetically ordered state. The
critical point h= k., separates a gapped QSL state ¢ <hc,)
from a field-induced magnetically ordered state (2> k).
The triplet components can be regarded as diluted bosons
and the QPT at /i =hs, can be treated as a Bose-Einstein
condensation (BEC) of low-lying magnons46. Support for
this idea comes from experimental findings on TICuCls.
Recently, the excitation spectrum in the magnetically ordered
state of TICuCl; has been determined using INS”. The
observed data are consistent with the theoretical prediction
of a gapless Goldstone mode characteristic of the BEC.

In the BE condensed state, the state of each dimer is found
to be a coherent superposition of the singlet and the S,=+1
triplet states. The phase in the superposition specifies the
orientation of the staggered magnetization in the plane trans-
verse to the magnetic field direction. The number of mag-
nons in the condensed state is not, however, infinite as
magnons cannot occupy the same sites in a spin system
due to a hard-core repulsion between them. The interac-
tion restricts the number of magnons to be large but finite.
Recently, there is a resurgence of research interest in BEC
because of its experimental realization in ultracold gases
of dilute atoms. SG AFMs offer another testing ground
for theories related to BEC. The definitive evidence of BEC
in the compound TICuCls motivates the search for conden-
sation phenomena in other SG systems.

Magnetization plateaus

The magnetization curve of a low-d AFM does not always
show a smooth increase in magnetization, from zero value
to saturation, as the magnetic field is increased in magni-
tude. In certain systems, the curve exhibits plateaus at cer-
tain rational values of the magnetization per site m, The
phenomenon is analogous to the quantum Hall effect in
which electrical resistivity exhibits plateaus as a function
of the external magnetic field Oshikawa, Yamanaka and
Affleck (OYA) derived a condition for the occurrence of
magnetization plateaus in quasild AFM systems by gen-
eralizing the LSM theorem to include an external magnetic
field”®. For general spin sysems, the quantization condi-
tion can be written as
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Su— my = integer,

(12)

where Sy=nS, n being the number of spins of magnitude
S in unit period of the ground state and my=nm is the
magnetization associated with the unit cell. The quantiza-
tion condition is necessary but not sufficient as not all
plateaus predicted by the condition exist in general Hida"
first predicted the existence of a magnetization plateau at
m:% in the magnetization curve of a § :% AFM chain
with period 3 exchange coupling. One can readily check
that the quantization condition (12) is obeyed as in this
case SU:% and my= % m=3, S= %, m= é). A gapped
phase is essential for the appearance of a plateau (magne-
tization unchanging) in the m versus / curve. More than one
plateau can occur if there is more than one gapped phase as
h is changed.

High-field measurements reveal the existence of magne-
tization pla‘[eaus50 in several AFM compounds. The §=+
material NH4CuCl, exhibits plateaus50 at M :% and %
(M=m/S). The S=+ SG AFM SrCuyBOs), is the first
example of a 2d spin system for which magnetization pla-
teaus have been observed experimentally. The plateaus
ate obtained’’ for M= %, % and % Momoi and Totsuka’
have suggested that the appearance of plateaus in SiCw
(BO3) is due to a transition from a superfluid to a Mott
insulating state of magnetic excitations. As pointed out
earlier, the triplet excitations in the SS model, which des-
cribes  StCu,(BOj),, are almost localized. In the presence
of a magnetic field and at special values of the magneti
zation, the triplet excitations localize into a superlattice
structure to minimize energy so that the magnetization
remains constant. As in the cases of KCuCl; and TICuCls,
the compound SrCuyBO;), is a network of coupled dimers.
A triplet excitation created on a dimer can propagate to a
neighbouring dimer due to the inter-dimer exchange inter-
action. The delocalization of triplets is similar to that of
electrons in crystals. In the presence of a magnetic field,
the triplet excitation is split into three components with
the §=+1 component being the lowest in energy. The
S,=+1 excitations can be regarded as bosons with a hard
core repulsion. The repulsive interaction arises from the
z-component of the exchange interaction and disallows
the occupation of a single dimer by more than one boson.
The xp-part of the exchange interaction is responsible for the
hopping of the triplet excitation to neighbouring dimers.
One thus has a system of interacting bosons in which itiner-
ancy competes with localization. The transition from itiner-
ancy to localization is analogous to the Mott metal—insulator
transition in electronic systems. If repulsive interactions
dominate, the triplet excitations (bosons) localize to form
a superlattice. A direct measurement o the magnetic super-
lattice in SrCuy(BO3); has been made by Kodama et al”
using a high-field NMR facility. The superlattice corre-
sponds to M :% which requires a high magnetic field
strength of 27 T for its observation. Superlattice structures
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for higher M values have not been detected as yet because
of the requirement of very high magnetic fields.

Summary and future outlook

SG AFMs exhibit a variety of novel phenomena, the dser-
vation and interpretation of which have been possible due
to intimate links between theory and experiments. Rigor-
ous theories and exactly solvable models have predicted
phenomena which were later verified experimentally.
Quantum magnetism is one of the few research areas in
which rigorous theories go hand in hand with experimental
initiatives. We have illustrated this interdependence through
a few chosen examples. The MG model illustrates the ori-
gin of SG due to the presence of furtherneighbour inter-
actions. The SS and Ji—h—-5—-Js— models extend the
1d model to 2d. Experimental realization of the SS model
became a reality about twenty years after the original
theoretical proposal was made. The AKLT model pro-
vides the correct physical picture of the ground states of
integer spin chains. Knowledge of the ground state has
given rise to testable predictions which were later veri-
fied experimentally. Spin ladders were originally studied
as toy models of strongly correlated systems. Theories of
undoped and doped ladder models motivated the search
for real materials which led to success in several instances.
The OYA theorem provides the condition for the exis-
tence of magnetization plateaus which is in agreement
with experimental results. SG AFMs further exhibit novel
quantum phenomena which illustrate how quantum effects
influence ground and excited state properties. We have
discussed only a few of these in the present review. Two
SG AFM systems that we have not described include the
compounds54 CaV4O9 and the tellurate materials CuzTer
0sXs X=Cl or Br)ss. The first compound is defined on a
1/5-depleted square lattice which is a network of four-
spin plaquettes connected by single links (dimer bonds). Each
square plaquette is in a resonating valence bond (RVB)
spin configuration in the ground state. In this case, the RVB
state is a linear superposition of two VB configurations.
In one configuration, the VBs (singlets) occupy the hori-
zontal links of the square plaquette. In the other configu-
ration, the VBs occupy the vertical links. More generally,
a RVB state is a coherent linear superposition of VB
states and is a well-known example of a QSL. The tellu-
rate materials can be described as networks of spin tetrahedra.
In both CaV4Q9 and the tellurate materials, the existence of
singlet excitations in the spin gap has been reported as in
the case of the kagomé lattice HAFM.

The QPTs considered in this review are brought about by
tuning magnetic field strengths. QPTs can also occur by
tuning of exchange interaction strengths. In the case of
the frustrated two-chain spin ladder model described ear-
lier, a first order QPT takes place at (k)= ()=
1.401 from the rung dimer state to the Haldane phase of
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the S=1 chain™. Kolezhuk and Mikeska® have constructed
generalized §= % two-chain ladder models with two-spin
and four-spin exchange couplings for which the ground
state can be determined exactly. QPTs to the various phases
are obtained by varying the exchange interaction strengths.
A lattice of coupled two-chain ladders provides another
example of a QPT which is brought about by tuning the
inter-ladder exchange interaction strength! A. For A <A,
the spin lattice is in the SG phase. At A=2., a QPT to a
long range magnetically ordered state occurs. Most of the
spin models considered in this review exhibit QPTs at
specific values of the exchange interaction strengths. One
might think that experimental observation of such QPTs
is not possible as exchange interaction strengths cannot
be changed at will. There is now reason to believe that
exchange interaction strengths can be controlled. Recent
observations’” of the superfluid to Mott insulator transi-
tion in a system of ultracold atoms defined in an optical
lattice open up the exciting possibility of investigating
phenomena associated with interacting many-body-systems
in a controllable environment. The optical lattice is gen-
erated as a light-wave interference pattern using several
criss-crossing laser beams. The lattice is equivalent to an
energy landscape of mountains and valleys which can pro-
vide the confining potential to trap individual atoms in
separate valleys. Proposals for implementation of spin
Hamiltonians in optical lattices have been put forward
with the aim to study the exotic quantum phases of inter-
acting spin  systems ¥ The exchange interaction between
spins belonging to atoms in neighbouring valleys can be
modified by controlling the intensity, frequency and polari-
zation of the trapping light. Spin Hamiltonians of interest
can be engineered through design of appropriate optical
lattice geometries. Practical implementation of some of
these ideas may be possible in the not too distant future.
Spin systems have recently been suggested as candidates
for realization of quantum computation and communi-
cation protocolssg. The spin systems considered so far n-
clude some SG AFMs like the MG and HG chains, the
two-chain spin ladder, ete®. Again, one anticipates intense
research activity in the coming years on such problems.
To sum up, the richness and vitality of the subject of SG
AFMs are evident in the challenging problems of current
research interest and also in the opening up of new ave-
nues of research.
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