COMMENTARY

to be a fundamental difference between the history of science and the history of art, especially of music. Is there something identifiable as ‘progress’ in music, comparable to ‘progress’ in science? Are there periods in the history of music when revolutionary changes have taken place, leading to radically new concepts or practices?
I am aware of none, at least in Indian classical music. The system based on swaras, ragas and talas has been in existence since time immemorial – some say from the period of Vedic chants. To be sure, within this framework, there have been, from time to time, several novel innovations to the form and content of the music. One such outstanding development in Carnatic music took place during the late 18th and early 19th centuries when the three great composers, Tyagaraja, Muthuswami Dikshitar and Syama Sastri created a vibrant body of compositions, referred to as kritis. I am emboldened to say that Indian classical music has been on a continuous creative path, devoid of paradigm shifts.

In contrast, over the last hundred years or so, classical Western music has experimented with its basic format. It has moved from tonality to atonality and ultimately to electronic sound. The consequences for the listener, however, have not been uniformly pleasant! The contrast from the glorious music created by Bach, Handel, Beethoven or Schubert to any of the modern composers is too stark.

Several decades ago, as a young scientist, fresh from a post-doctoral sojourn abroad, and eager to find evidence of dynamism in Indian society, I was engaged for a brief period in a futile search for similar ‘progress’ in classical Carnatic music. But maturity has brought with it greater aesthetic appreciation; and, fortunately, the brain has still retained the memory of some outstanding musical experiences – the brilliance of Ayyakkudi’s neraval in the amapullavai of Sri Subrahmanya Na
maste, the haunting Latangi alapana of Mali which brought tears to the eyes of the whole audience, the grandeur of Ve
etiVenkateswarthi’s Kalyani alapana, the poignancy of M.S. Subbulakshmi’s Kiravani, and the peace and contentment which I experience every time I listen to K. V. Narayanaswamy’s Kapi. I now know instinctively what creativity in Indian music means; but I cannot define it.


S. Rajappan lives at B-1, Melody Apartments, I.C.S. Colony, Pune 411 007, India
e-mail: p_rajappa@vsnl.com

FROM THE ARCHIVES

D.D.T.

Dichlor-Diphenyl-Trichlorethane (DDT) was originally synthesised by Othamar Zeidler in 1874 and its physiological and pharmacological properties remained unknown till this important chemical was rediscovered by Paul Muller of the USA. Department of Agriculture. But Frey of Cincinnati Chemical Works, USA, solved the problem of its production on a commercial scale. The Americans consider it one of the most important discoveries of World War II and truly this insecticide can be termed as such. Paul Muller found

that it killed bugs and it was first tested in 1939 during the plague of potatoes where it killed all the beetles. In 1943 it was used in Naples where it stopped the epidemic of Typhus. The matter must have been of very considerable importance that the Prime Minister Churchill made a special mention of DDT in his latest review of war before the House of Commons. DDT promises to wipe out mosquito and malaria and to destroy household pests such as cockroaches and bedbugs, and to control some of the most damaging insects. Lt.-Col. Ahnfelt, of US Surgeon-General’s Office, considers that DDT will be to preventive medicine what Lister’s discovery of antiseptics was to surgery.

The use of DDT as a delousing agent against Typhus has been an open secret in America for several months. But in June last for the first time its manufacturers and Army, Agriculture and W.P.B. officials announced some of its amazing properties:—(1) If sprayed on a wall it kills any fly that touches the wall for as long as three months afterwards; (2) a bed sprayed with DDT remains deadly to bedbugs for 300 days; (3) clothing dusted with it is safe from lice for a month, even after eight launderings; (4) a few ounces dropped in a swamp kills all mosquito larvae; (5) it is deadly to household pests such as moths, cockroaches, termites and dog’s fleas; (6) as a crop protecto
tor, it is deadlier and longer lasting than other insecticides. It has been found effective against potato beetles, cabbage worms, Japanese beetles, fruit worms against which other insecticides have proved to be failures.

USA has a very big programme in hand for its production but all for the army. DDT owes its deadliness both as a contact and a stomach poison. It first paralyzes hind legs of an insect and finally brings complete paralysis and death. It is remarkable that pure chemical has little effect. It is used in an oil solution or mixed with an inert powder. The usual dose is 1–5 per cent. DDT. It is non-toxic to human beings in the concentration which is used.

For the first time it was synthesised in the Government Industrial Laboratory at Hyderabad-Deccan, and a programme for producing it on a larger scale has been undertaken.