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The classical limit problem is discussed for the quan-
tum mechanical energy eigenfunctions using the
Wentzel-Kramers—Brillouin approximation, free from
the problem at the classical turning points. A proper
perspective of the whole issue is sought to appreciate
the significance of the discussion. It is observed that
for bound states in arbitrary potential, appropriate
limiting condition is definable in terms of a dimen-
sionless classical limit parameter leading smoothly to
all observable classical results. Most important results
are the emergence of classical phase space, keeping the
observable distribution functions non-zero only within
the so-called classical region at the limit point and
resolution of some well-known paradoxes.

THE quantum-—classical relationship is studied in dispa-
rate ways with varied motivations. Semiclassical meth-
ods, built on classical trajectories, have their roots in the
old quantum theory. The knowledge of the classical beha-
viour (regular and ‘softly’ or ‘harshly’ chaotic) is used to
draw conclusions about the quantum mechanics (QM) of
the system starting from the Green’s function or the pro-
pagator and then reducing its trace to a sum over all perio-
dic orbits'. A general scheme is thus devised to handle
the extreme cases of classical dynamics — both integrable
and ergodic. With the derivation of ‘trace formula’, the
semiclassical theory hopes to overcome the challenge posed
by classical chaos and casts light on the correspondence
principle2. Berry has clearly identified the Holy Grail of
the semiclassical theory as the quantization of classical
chaos. The main emphasis of the above approach is to
formulate a tractable and reliable theory of the so-called
‘mesoscopic’ systems and not as such to address the pro-
blem of classical limit and the emergence of classical
behaviour from QM. According to Gutzwiller', ‘On the
whole, the calculational results, while acceptable or even
good, cannot be expected to be correct to the last deci-
mal; but they are at least understandable intuitively, rather
than being the result of a monstrous numerical calcula-
tion’. Exact quantum mechanical calculations become
exceedingly difficult near the classical regime and a sort
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of ‘classical version of QM (as Gutzwiller himself bran-
ded his theory) comes handy to probe many unexplored
issues.

Sen et al.’ have shown that Ehrenfest’s theorem, in its
generalized form, reveals some interesting exact relations
between classical mechanics and QM. An idea of app-
roximate particle tracks emerges from closed relations
among few quantum mechanical expectation values in
certain systems according to Ehrenfest’s theorem. The
analysis clearly explains why in all early experiments on
electrons, protons, etc. classical mechanics has been suc-
cessfully used and even in precise experiments as in mass
spectrometers or B-ray spectrometers, no deviation from
classical laws was detected. We would like to point out a
popular viewpoint among many physicists*” that for all
practical purposes, classical behaviour of macroscopic
bodies can be easily traced in terms of narrow packet
representation and Ehrenfest’s theorem. For macroscopic
masses, spreading time turns out to be of the order of cos-
mological period and may be neglected. The problem of
superposition of two packets also cannot exist because
there is continuous observational interaction with the sur-
roundings and the classical particles always remain in a
collapsed narrow state. Ballentine et al.® have criticized
this view because the classical equation of motion does
not exactly agree with Ehrenfest’s equation. But a more
serious objection has been raised by Sen and Sengupta’.
For classical particles it is always possible to know both
position and momentum with finite errors, i.e. both posi-
tion and momentum density functions must be compact.
This is impossible in the y-function representation.

Based on trajectories, two independent formulations dif-
fering in conceptual structure but mathematically equi-
valent with standard QM have been developed. These are
Feynman’s path integral approach and Bohm’s causal QM
respectively, which definitely enriched our understanding
of the problem. In Feynman’s approach, a quantum mecha-
nical system samples all possible paths having different
weight factors (nonanalytic paths too!) and the motion is
described as weighted sum over all paths. In the appro-
priate classical limit, the amplitude concentrates itself about
the stationary action (classical) path. Since this method is
extremely difficult to apply to solve simple energy eigen-
value problems, it is not a practical proposition to use
this approach for discussing the classical limit problem
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for eigenfunctions of energy. The Bohmian approach, on
the other hand, transfers the inescapable nonlocality of
quantum description from the state function to the so-cal-
led quantum potential (Q) and accommodates the so-called
particle ontology by discarding completeness claim of the
wave function description of an individual system. The
theory, however, presents what is called ‘unobserved rea-
lity’ instead of the observed one and it is argued that a
state-dependent condition Q — 0 (vanishing quantum poten-
tial), encapsulates within a single universal criterion for
characterizing and achieving the classical domain as a
mathematical limit of QM. An additional condition is,
therefore, necessary to prove that in the limit Q — 0, the
motion will turn out to be the observed one. But even if
Q = 0, the Bohmian tracks are not classical in all respects
because these tracks are completely determined by the
initial position of the particle, while for classical tracks
we need to know both initial position and velocity. To
emphasize the inherent difficulty of this approach, we
consider two examples. For a free particle wave function
Y =exp (i p.r/h), Q= 0. The only meaning of this result
is that the unobserved motion of the particles will obey
classical laws. If we try to introduce classical ontology
here, there will be difficulties. Our second example is
that of a Gaussian packet for which Q # 0, but still the
propagation of position and momentum density functions
are found to obey classical laws®. Thus even with non-
vanishing quantum potential, we may have classical beha-
viour for quantum mechanical systems.

Another line of argument maintains that whatever limi-
ting procedure is adopted, the macrorealistic description
cannot emerge from standard QM unless additional ingre-
dients are introduced. Serious attempts have been made
to understand the appearance of classical regime in terms
of environment-induced decoherence models’. However,
all aspects of classical realities are yet to be explained con-
sistently in the decoherence scheme using standard QM.
The theories developed by Ghirardi et al.', Diosi'' and
Joos and Zeh'? modify the Schrodinger equation, intro-
ducing nonlinearity that leads to spontaneous collapse and
localization in space occurring at random times. The de-
coherence models (environment-induced or dynamical),
lack the ‘particle ontology’ of the classical systems because
they adhere to the standard assumption that the wave
function description provides complete specification of
the state of an individual system. Moreover, Ballentine'
has shown that some of these (spontaneous collapse models)
theories violate the energy conservation principle and are
incompatible with the existence of stationary states.

Yaffe'* has proposed a novel approach based on the
observation that increasing the number of degrees of free-
dom (N) simplifies the analysis in many quantum mecha-
nical problems. The author asserts that in the classical
limit all quantum interference effects must disappear. The
prescription for obtaining the classical limit of quantum
theory involves (i) construction of general coherent sta-
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tes'>'® by applying each of the elements of a Lie group of
unitary operators (having the same dynamical symmetry
group of the physical system under consideration), that
acts irreducibly on the Hilbert space of the theory, to
some initial state |0 >, and (ii) the demonstration that any
coherent superposition of these states becomes in the
limit indistinguishable from an incoherent mixture of the
same. The irreduciblity of the group apparently implies
the completeness of the basis. However, rigorous mathe-
matical demonstration of the completeness of the cohe-
rent state basis functions with the required classical limit
property in the large N limit is yet to be achieved.

Coherent states, first discovered by Schriidinger17 and
later extended by others, seem to offer a simple approach
to the classical limit problem. In a harmonic oscillator
potential both the position and momentum probability den-
sities p(x) and p (p) execute exact classical motions and
in the limit 7 — 0, both density functions become loca-
lized and it appears that we have arrived at the classical
particle description from quantum principles. Hepp4 tried
to extend this result to arbitrary potential functions. But
the argument is fallacious. Let us take the Schrodinger
coherent state in a harmonic oscillator potential:

B 2(x_xcl)2 onf ipcl Xel
x,t)=Ne -— et —| X —— ||,
W (x, 1) Xp > 5 P

where B’ = pw/ i, x (f) = Acost, pg (f) = u x and E, =
ho/2.

To recover the classical picture of an oscillating parti-
cle, it is necessary that both p(x) and p (p) become loca-
lized to a point in a suitable limit. In terms of the disper-
sionsc_.z.:<x2>—<.r>2:h/(2Ju_K) and Gf,:<p2>—
<p >2 = hz/(4 0.3), (x being the spring constant), a di-
mensionless classical limit parameter

,/2u<E>ox B ﬁ<E>
h R

i< E>=%(po)2A2 +hw)

can be defined. If we go to the limit o0 — oo along the
path 7 — 0, keeping [, < £ > and k constant, both p(x)
and p (p) become localized to a point. But this is unrea-
listic because (i) in nature, /4 is an universal constant and
(ii) there are examples where quantum mechanically pre-
dicted results'® are independent of . The correct limit-
ing path might be L — oo, keeping 7, < £ > and k con-
stant. But in this procedure though p(x) becomes loca-
lized, p (p) spreads without limit and the expected point
particle picture cannot emerge. This result gives a con-
vincing proof that a W-function representation (narrow
packet) per se cannot provide classical-like description of
single particle dynamics.

Since the predictions of quantum theory are in the form
of probabilities, the emergence of classical behaviour from
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quantum mechanical energy eigenvalue problems is us-
ually studied by comparing the position and momentum
distributions for a classical ensemble with those obtained
from QM in the limiting situation. The phase-space for-
mulation of QM offers a framework in which quantum
phenomena can be described using as much classical lan-
guage as allowed. The main tool of the phase-space for-
mulation is the phase-space distribution function defined
in terms of the expectation value of a quantum mechani-
cal operator corresponding to a function of classical con-
jugate variables g, p. Wigner distribution function (WDF)
determined from the quantum mechanical y-function des-
cribes correctly the position and momentum density func-
tions, but for other functions such as energy, it is the
expectation values which are given correctly. Actually, it
yields correct quantum mechanical expectation values for
all Hermitian-ordered operators calculated through phase-
space integration (the Weyl rule of association). Also (i)
it satisfies the Liouville’s equation only approximately
and (ii) it is well known that it is not always positive
definite. Fulfilment of the last two conditions is neces-
sary to ensure that in the classical limit, WDF can be inter-
preted as a physically meaningful classical phase-space
distribution function. In fact, Cohen'’ has clearly demon-
strated that no choice of distribution function can furnish
an exact reformulation of QM in terms of a phase-space
density function. However, the quantum—classical corres-
pondence demands that exact phase space formulation of
QM should be possible, at least in the classical limit. Home
and Sengupta (unpublished report) have observed that in
the case of analytic potential functions and for dynamical
variables which are analytic functions of the Cartesian
position and momentum coordinates, WDF satisfies an
exact phase-space formulation of non-relativistic QM in
the limit 7 — 0. However, this very limiting procedure
and the underlying expansion in terms of / remain ques-
tionable.

The conventional approach in the classical limit pro-
blem, on the other hand, focuses our attention to specific
problems and to search for the limiting conditions at which
the quantum mechanical results agree with those obtained
from classical mechanics, ignoring the bigger question of
retrieving a whole domain of classical observable results
from QM. In such cases, we like to emphasize that the
meaning of the classical limit is not always clear and in
different cases the meaning may be different. Various pro-
blems like scattering of a particle in potential fields™*”",
wave-packet propagation in free and potential fields — cal-
culation of travel time, the study of barrier penetration
and atomic collision dynamics®*, classical limit of quan-
tum radiation fields**** and the limiting behaviour of quan-
tum mechanical stationary states’®”’ have been conside-
red by different authors. These results are interesting and
useful, but do not clarify the extent of the conceptual
framework of classical mechanics recovered from the
quantum principles. For example, in scattering problems
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the classical expression for differential cross-section can
be obtained in a limiting way, but the classical picture of
particle tracks deviated by interaction with the scatterer,
remains unrecovered. We insist that in the classical domain
this picture implied in the classical calculational method
is a valid one, because the tracks are experimentally veri-
fiable.

In a previous work’', we have developed a method of
obtaining the classical limit for scattering of particles by
a potential field in terms of a dimensionless limit para-
meter. In the present work we discuss a general method
to get the classical limit of quantum mechanical energy
eigenstates. We use the WKB method***’ for asymptotic
solutions which circumvent the problem at the classical
turning points. After Pauli®’, it is widely believed that in
the limit 27— 0, WKB asymptotic solution of Schrodin-
ger equation leads to the Hamilton—Jacobi (H-J) equation
of classical mechanics. This is a myth similar to the be-
lief that Ehrenfest’s theorem leads to Newton’s equation
of classical mechanics. The latter has largely been remo-
ved by the recent works of Sen e al.’ and Ballentine
et al.’. But little has been written on the inadequacy of
the usual treatment of WKB approximation in the classi-
cal limit problem® . Formulations by Pauli’” and by Bohm
and Hiley™ arrive at a classical look-alike ‘quantum H-J
equation’, replacing VS (or VS to the first order in Pauli’s
case) by the momentum. This quantity, termed as ‘unobser-
ved momentum’ of the system by Bohm, is identically
equal to zero in the case of eigenfunctions in one dimen-
sion. In the context of the classical limit problem this re-
semblance is, therefore, thoroughly illusory. As Holland'®
has rightly pointed out that ‘even if one contrives to obtain
the classical H-J equation in some limit, we are not justi-
fied in identifying this with the H-J equation describing
the propagation of an S-function associated with an en-
semble of precisely defined trajectories whose law of
motion is given by X = V.S/|L or in treating the probability
of being as a limit of the probability of finding. ... In
order to smoothly connect quantum and classical dyna-
mics in the usual approach, the law x=VS/u and the
notion of a precise initial position x, of a material object
are slipped in as additional postulates’.

Textbooks™** and pedagogical articles often esta-
blish the quantum-—classical relation by showing that the
two distribution functions approach each other, in a locally
averaged sense, in the usual correspondence principle limit
(Bohr) of large quantum number n. First, we note that no
physically meaningful mechanism other than imprecise
detecting process can be associated with the local averag-
ing procedure referred to as ‘coarse-graining’. Also, the
limiting procedures n — e or i — 0 are not always defi-
ned in physically meaningful ways. Particularly impor-
tant is to identify a dimensionless limit parameter and to
mention precisely which variables are kept constant as
the parameter approaches the limit, so that the limiting
path is clearly defined. The problem may be highlighted

27,35
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by the example discussed by Cabrera and Kiwi'® that
even if individual energy eigenfunctions lead to the requi-
red classical results in the large quantum number limit,
simple linear combination of three one-dimensional har-
monic oscillator eigenstates gives results at variance with
classical physics. Earlier, Home and Sengupta®’ construc-
ted a paradoxical example with superposed eigenfunc-
tions of one-dimensional Coulomb potential, which leads
to inconsistency with classical mechanics in the limit
n — oo. The present analysis shows that these incongrui-
ties are removed with the adoption of proper limiting
procedure. We will discuss the resolution of the para-
doxical examples in detail later in the article.

The limit 27 — 0 is also not physically meaningful un-
less compared to which relevant parameter of the system
R is small'™?"*! In fact, all limiting processes must be de-
fined in terms of a dimensionless limit parameter. Another
aspect almost wholly ignored is the lack of realization that
it is not enough to say that the dimensionless parameter
tends to zero/infinity in the limit. The statement for the
limiting procedure is incomplete unless one states which
of the dynamical variables are kept constant as the para-
meter approaches the limit. Otherwise significant variables
like energy, angular momentum, etc. will become unphy-
sical at the limit point. For example, with |E| e (n i) for
hydrogen atom, does the limiting process n — c or 7 — 0
imply that in the limit the energy of the system tends to
zero or infinity?

Almost all textbooks on QM mention that classical
results are achievable through WKB approximation with-
out demonstrating which particular results are achieved.
The first difficulty in the WKB approximation is with the
limiting process. Our assertion is that (i) we have to find
a suitable dimensionless parameter and (ii) completely
specify the path along which the limit is reached by indi-
cating which dynamical quantities are to be maintained
constant. In this article we confine our attention to bound-
state eigenfunctions only. It is shown here that a dimen-
sionless limit parameter o can be defined in terms of the
separation between the two turning points. The transcri-
bed WKB equation in terms of o, renders asymptotic
solutions true in the limit o0 — oo. The exact path along
which the limit is reached is determined by keeping the
energy of the system constant. In the limiting situation,
only the observational predictions of the theory, i.e. the
distribution functions (both position and momentum) re-
main finite and meaningful. To our knowledge, there
exists no treatment of the WKB approximation along the
above lines. It is also observed that the conventional app-
roach to the classical limit problem starting from the
Schrodinger wave equation, provides a physically trans-
parent and comprehensive framework for the under-
standing of the emergence of classical mechanics in a
limiting way. For scattering states, the WKB method
is not helpful and the problem will be discussed else-
where.
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In QM, the coordinate-space and momentum-space dis-
tributions are correlated via Fourier transformation rela-
tion of the corresponding wave functions. The method of
stationary phase, using WKB wave function, gives the sta-
tionary phase point x, as a function of p from which
comes the significant contribution to the Fourier integral.
In the limiting situation, the method finally yields the
classical momentum distribution as well as the phase-
space distribution, even though the phase-space distribu-
tions have no counterpart in standard quantum theory.
This is due to the fact that in the classical limit, the method
of stationary phase gives rise to a unique correlation bet-
ween position and momentum, which in a way implies
snapping-off the Fourier coupling of the coordinate and
momentum spaces and consequently the breakdown of
(x, p) uncertainty relation. In the development of the
semiclassical approximations in QM, both Gutzwiller'
and Maslov and Fedoriuk™ have used the method of
stationary phase. In the present study, however, this
method assumes greater significance as it leads to the
emergence of the limiting phase-space description from
a y-function.

WKB solution for bound states

The Schrdodinger equation for one-dimensional eigen-
value problem may be written in the form:

S dAy
=0(xW , 1
=N (1)

o

where o = 2u|E |0/ %, and O(x) = —a ’[1 — V(x)/E), E is
an eigenvalue of energy for a bound state, F(x) is the
potential energy function and p is the mass of the parti-
cle. We assume F(x) to be analytic and such that there are
two turning points (Q=0) atx=A4, B(B>A) and a =B — A.
Between the two turning points, the dominant terms of
WKB solution (terms of the order of o' are neglected)®®,

V)~ [—Q(X)]‘”“sin[af ~0(n)dr+ Z] )
In the region beyond B (x > B) the solution is
W~ 100 exp | ~af; O 3
and for x < 4,
1/4 4
W0~ 100" exp| ~a [y . @

For a number of problems (e.g. linear harmonic oscilla-
tor, particle in a homogeneous field etc.), Fligge” has
shown that the WKB method correctly reproduces quan-
tum mechanical asymptotic solutions.
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Continuity requirement of the eqs (2)—(4) leads to the
general WKB eigenvalue formula:

ocjj,/— 0(dt = [;w%] , (5)

where n = 0,1,2, . . .. The equation is asymptotically true,
i.e. terms of the order o' on the right hand side are neg-
lected. An inspection of eq. (5) reveals that in general,
the eigenvalue £ must be a function of nh/ JE . This re-
sult may be easily checked for the special cases of harmo-
nic oscillator or hydrogen atom problem. We define a dimen-
sionless quantity:
1/2;1 | Ela

o= (©6)

as the classical limit parameter such that the classical
regime is recovered in the limit o0 — oo, when the limit is
taken keeping £ and other relevant dynamical quantities
constant. Since £ is a function of nh/\/i. this can be
achieved (i) for fixed p letting 2 — 0, n — oo such that
n h is constant and (ii) for the fixed observed value of 7,
taking n — o and [l — oo, keeping n/\/iconstant. The
implications and significance of the limiting procedures
will be discussed presently and we argue for a paradigm
shift on some interpretational aspects of the classical limit
problem. We see from eqs. (3) and (4) that outside the
region 4B, both y(x) and |y(x)|* tend to zero as oL — oo,
in agreement with the classical result. Between the turning
points in the region 4B, the probability distribution func-
tion in the limit is

p(x)dr ey () o~ S ™)

-0(x)

Because of the rapid oscillations, the squared sine factor in
[w(x)* (from eq. (2)) approaches 1/2 in the limit o — oo
according to Riemann-Lebesgue lemma. For the conven-
tional limiting process, when we confine to a state of
high energy in the asymptotic region, a coarse graining
process is essential because the oscillations of the density
function have a finite spacing. In our limiting procedure
(o0 — oo, keeping the energy constant), the oscillations of
the density function become infinitely close and we can
use the rigorous mathematical procedure of the Riemann—
Lebesgue lemma (for squared sine function). But the infi-
nitely rapid oscillation of the wave function robs its
effectiveness as a mathematical aid to calculation. However,
starting from the usual standard form of the Riemann-
Lebesgue lemma, which states that the integral of the pro-
duct of a rapidly oscillating function and a smooth func-
tion goes to zero, if we take the second function as
constant, it implies that the integral of a rapidly oscillat-
ing function will go to zero. As the classical limit is app-
roached, for the infinitely close rapid oscillations of the
function, the average value of the integral over arbitrary
small intervals decreases monotonically and becomes zero
at the limit point, making the function itself equal to zero.
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It implies the significant result that in the limiting situa-
tion, all the physical quantities like position density func-
tion, etc. remain finite with a gradual weakening of the
wave function (y — 0).

In many quantum mechanical calculations one has to
determine the limiting value of oscillating functions like
e’ r oo (such as Born’s approximation formula for
Rutherford scattering). The limit is generally taken as zero,
but the logic is usually not mentioned. Consider the mea-
surement of a physical quantity represented by, say, the
function sin (o). The instrument interacts with the phy-
sical system not exactly at a point x but over a small
length Ax and the response is really the average value of
the function over Ax around x. ‘The value of sin(o) at x’
really means the quantity

< sin (@) >= (A0) ™ [ sin (owr)d
_ 2sin(0) sin (0tAx)
(0tAx)

—0 asot — o0

This limit is independent of the smallness of Ax. The dif-
ference between this limiting procedure and coarse grain-
ing is clear. If o is kept fixed at a constant value, then the
period of oscillation in sin(ow) is e o', If Ax is small
enough such that otAx « 1, then < sin(otx) > remains oscil-
lating with respect to x. If alAx » 1, i.e. Ax is much grea-
ter than the spacing of oscillations, then only < sin(owx) >
will give an almost smooth function. This procedure is
coarse-graining. Thus coarse-graining implies a constant
o, whereas Riemann—Lebesgue lemma implies a limiting
process with o0 — eo.

The Fourier transform of y(x) will give us the momen-
tum probability density p(p) = [®(p)],
where

+(p)= ﬁj\y(x) exp [—ipx/h]dx . (8)

Near the limiting situation, y(x) becomes vanishingly small
beyond the turning points; we can therefore confine the
integral eq. (8) between 4 and B and substitute for y(x)
from eq. (2). Writing the sine function in terms of expo-
nential functions, the RHS of eq. (8) breaks up into two
terms as P(p) = P.(p) + P _(p), where

+.(p)= %f[{—Q(x)}‘”“ exp * i{ocLB
mdw%%‘-%}] dx. ©)

We use the method of stationary phaseﬂ'39 to eva-

luate the integral. In the neighbourhood of the classical
limit, most of the contribution to the integral comes for
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values of x near the stationary phase point x, defined
by

i[ocj” —Q(r)dr+—¥ﬂ} =0
dx| % 4 h
or

2

P gy,
2p
The solution of eq. (10) gives the stationary phase point
Xo as a function of p. It implies that significant contribu-
tion to the integral of eq. (9) comes from the neighbour-
hood of xy. In other words, we may also say that x, and p
become correlated by the classical relation given in eq.
(10). The phase term within the exponential function in
eq. (9) may be expanded about x; retaining terms up to
87, where x = xo + 8. We then ultimately have

(10)

111 d
0 =af ‘Q(')d’iz[i(d—z)»~<052%‘pxo} (1)
and
+4(p) < exp i{aJB —Q(r)dr$ﬂ]
X0 h
_expHi(r8)” 1)
[—Q(.\’O +8)]l/4 ’
where
2.1 dp
1o =55 G0

Since most of the contribution to the integral comes from
the region around x = x,, we can take the denominator in
the integrand outside. Writing this term as proportional
to Jp(xo) and putting o0 = z, we get

exp + io{j’f J-0mdr ¥ P;‘“]
Xo

Yoy P(x0)

1(p) e [exp+iz’dz. (13)

Again, since Y, is proportional to o, it goes to oo in the
classical limit and the entire contribution to the integral
comes essentially from the point 8 =0; we can take the
limits of the integral from — e to co. The modulus of the
integral isy/ and the momentum distribution, therefore,
may be written as

_ 2 d
P(p)dp =1+ (p)  dp e =0
Pac

Now if we interpret eq. (10) as defining the momentum at
x of a particle with energy E, this is identical to the clas-
sical value of p(p).

Finally, let us summarize all the limiting properties of
the quantum ensemble with members having the same
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energy £. The position and the momentum densities
within 4B are given by p(x) e I/JE—V(,\') ~1/p and
p(p)e< 1/(p%), 1'es%eclively, where p and x are related
by eq. (10). Also --=0 and outside 4B, both p(x)
and p(p) become zero. All these are quantum results. If
we now insist that particles found between x and x + dx
have momentum between p and p + dp where p is given
by eq. (10), then all the above properties belong to a clas-
sical ensemble for which the initial p(x) ~ 1/,;E—V(x) .
But for a classical periodic system p(x) is proportional to
the time spent in the region between x and x + dx, i.e.
p(x) o< 7 Equivalence of quantum and classical distri-
bution functions at the limit point, therefore, implies the
classical relation p/iL =x. We see that the same physical
facts p(x), p(x), etc. can now be interpreted by an alterna-
tive conceptual structure where position of a particle at a
time ¢ attains ontological significance and velocity of a
particle is a fundamental observable quantity. The self-
contained classical mechanics is indispensable for QM to
ensure a direct contact with the observable world (through
the postulates of measurement theory). A complete agree-
ment of both the position and momentum distribution
functions at the classical limit point is, therefore, absolu-
tely necessary for the theory reduction to recover the entire
observational results. This is exactly what is established
here for quantum mechanical energy eigenfunctions. We
have also found that at every x, there are two possible
values of momentum given by eq. (10). This result indi-
cates a breakdown of the uncertainty principle at the limit
point. This removes the major hurdle in introducing the
concept of particle tracks.

The constancy of p(x) follows from the classical conti-
nuity equation:

Ip(x) __ J[p (x)x]
ot ox
=0.

(14)

Thus the limiting quantum results exactly agree with
those of a classical ensemble moving according to the clas-
sical laws. The phase space of this ensemble is given by
W (x, p) = p(x) 8 (p — p(x)). (15)
We have remarked earlier that the limiting process
o — oo, keeping £ constant, can be reached in two ways.
In the first instance we keep [ constant and take 7 — 0,
n — oo such that n# remains constant. This may be re-
garded as a theoretical limiting process because we are
changing the value of the universal constant # and in a
way, gradually eliminating all quantum effects from nature
at the limit point. The second procedure is to keep % con-
stant and vary (M, n) — o= such that n/ﬁ remains con-
stant. This means that for heavy particles, quantum effects
will gradually decrease.
It is clear that the discreteness of energy which depends
on 7i/4f|u also disappears in the limit o0 — oo, keeping #
and E constant. By a reasonable choice of accuracy we
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can fix o at a sufficiently large value say o » 1, so that
for a given energy £, we can find a critical value of mass
Mo, such that for @ > W, quantum effects will be negli-
gible. Thus nature is divided into a quantum domain of low
mass and a classical domain of large mass.

Using quantum mechanical asymptotic solutions and
taking conventional local averages (coarse-graining) for
the density functions, Robinett’” has compared the quan-
tum and classical probability distributions for both posi-
tion and momentum for several model one-dimensional
systems. We have arrived here at the general result with
precise definitions of the limit parameter and of the limit-
ing path. Moreover, the present method recovers the phase-
space at the limit point and the following discussion will
show how it resolves paradoxical examples of classical
limit of superposed states.

For two energy eigenvalues £, and £,, we write for the
superposed state (from eq. (2)):

W) ~ Yax) ¥ () ~ [{= 01(x)} " sin 0,0, (x)

{— 0x(x)} " sin 0,0,(x)]. (16)

Then the interference term in the position density function:
(01(x)0x(x)) ™ {sin 0ot;0,(x) sin 0,0,(x)}

will vanish as both sin o;0,(x) and sin 0,0,(x) indepen-
dently approach zero, when the limit ot — oo is taken keep-
ing the energy values constant. Thus in the limit the ori-
ginal pure quantum state will be reduced to a mixed state
of different energies. Particles of different energies at the
same position x will have different momenta. This resolves
the paradox posed by Cabrera—Kiwi and Home—-Sengupta
examples and implies the fact that the large quantum num-
ber is not a proper classical limit criterion. According to
the present analysis, classical limit is approached in the
large o limit whence the cross or interference terms dis-
appear with the individual wave functions approach to
zero at the limit point. The change of a pure quantum state
to a mixture of various energy states in the classical limit
is similar to a decoherence effect. We note here that the
passage to classical limit is entirely different from the uni-
tary time evolution process implied by Schrodinger equa-
tion, which cannot reduce a pure state to a mixed state. In
this case the decoherence effect is induced by a change of
the limit parameter and not by a time development.

Discussion

All previous attempts to get the classical limit for eigen-
states of energy are confined to specific potential func-
tions. In the present analysis it has been possible to deve-
lop the classical limit for arbitrary analytic potential
functions. The three characteristic features of the present
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approach are: (i) a dimensionless limit parameter is defi-
ned and the asymptotic WKB solutions are expressed in
terms of this parameter, (ii) a precise limiting path is de-
fined using the condition that the energy £ of the system
will remain constant all through the limiting process and
(iii) the method of stationary phase is invoked to calcu-
late the Fourier transform. This procedure leads to the
emergence of a correlation between p and x at the limit
point and finally yields all the observable classical results
from the quantum description of bound systems in the
appropriate limit.

In the classical regime, p(x) becomes entirely confined
between the two turning points and as £ is kept constant,
momentum is also definitely confined within a finite interval.
Such a state is no longer describable by a \v-function7. A spa-
tially narrow packet is bound to be inordinately extended
in momentum space and cannot represent a classical par-
ticle having compact probability density functions in both
coordinate and momentum spaces. Description of a reali-
stic classical particle demands the breakdown of Fourier
correlation inherent in wave function representation. In
the present analysis, the correlation between x and p
obtained in eq. (10) can be interpreted that a particle at
position x has the momentum p(x). However, these results
alone do not lead to classical mechanics, since complete
equivalence of quantum and classical distribution func-
tions at the limit point requires the classical relation
p/lL=x, where velocity of a particle (x) is a fundamental
observable quantity. In QM, velocity is undefined and we
have an abrupt qualitative change here. It should be empha-
sized that the transition to classical mechanics is achi-
eved by introducing the interpretational postulate that the
momentum p(x) is related to classical velocity x through
the relation p/pL = x . Equation (10) leads to Newton’s equa-
tion of motion and all properties of the quantum system
are consistently interpretable as those of a classical ensem-
ble defined by the phase space density function given in
eq. (15).

This is somewhat similar to the emergence of new con-
cepts and qualitative features when the general theory of
relativity (GTR) is reduced to Newton’s gravitational theory
in the limit of weak field and small velocity. By changing
the interpretation of ‘gy,’ as a gravitational potential func-
tion, the concept of ‘force’ emerges along with the linea-
rity of the basic dynamical equation. This leads to the
uniqueness theorem for the solutions and to the New-
tonian determinism, all of which are alien to the non-
linear GTR. All these new features are experimentally
well verified in this domain. It is obvious that a change in
conceptual paradigm cannot be deduced mathematically.
It requires the introduction of interpretational postulates.
When two theories use essentially the same conceptual
framework, a purely mathematical reduction of the gene-
ral theory to the restricted one is possible. Even in the
case of special theory of relativity, Bacry and Levy-
Leblond*” have shown that the low velocity limit of Lorentz
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transformations for space-like intervals ((x; —xy)/c(t, -
t;) » 1) shows non-Galilean features as the time-ordering
of two such independent events may be reversed for some
observers. The concept of absolute time in classical mecha-
nics is valid only for a finite world!

In the present study our analysis shows a gradual
weakening of the wave function to zero as the classical
limit point is approached, indicating that quantum calcu-
lations become increasingly difficult to work out and clas-
sical calculations give more and more accurate predictions.
We have extended the present method (to be discussed
elsewhere) to two- and three-dimensional cases and consi-
dered systems under non-analytic potentials such as dis-
continuous potential barriers where the WKB method is
not applicable. In all the problems discussed, it appears
that QM is valid in the classical regime in a limiting way.
However, some of the hallmark notions of QM (e.g. wave
function description, quantum uncertainty relations, etc.)
cease to be operative in the classical domain.

We have discussed the inadequacies of quantum mecha-
nical wave function description for a macroscopic system
(in a subsequently communicated work). The significance
of the unphysical, infinitely rapid oscillations of the wave
function near the classical regime has been critically exa-
mined here, where the inadequacy of quantum mechani-
cal wave function for a complete description of macroscopic
system is discussed. When we separate out the centre of
mass motion from the many-particle Schrodinger equa-
tion describing a macroscopic body, it represents an equa-
tion for a massive point particle. Our analysis of classical
limit problem shows that in the case of heavy mass, clas-
sical description emerges with the disappearance of all
the nonclassical features of QM. It is further argued that
appearance of particle track is essentially a classical phe-
nomenon and the observed track will always agree with
the classical result within experimental error, even for
arbitrary potential field (containing beyond quadratic
terms), in violation of quantum mechanical prediction
(Ehrenfest’s theorem). This testable prediction offers an
interesting experimental verification, crucial for the under-
standing of the nature of quantum-classical relationship.

Also, analysis of wavepacket spreading calculation shows
that for particles with mass ~ 10" g, the insignificant
spreading will always be stymied by infinitesimal envi-
ronmental disturbances, ruling out any possibility of inter-
ference. This result may help in identifying the boundary
region separating the quantum domain of low mass and
the classical domain of large mass.
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