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Figure 3. Parameter space (denoting group benefit of cooperation on
the x-axis and individual benefit of cheating on the y-axis) over which
different genotypes evolve in the third model. «, Altruist allele domi-
nant and b, cheater allele dominant. Like the second model, the patterns
are similar in both altruist and cheater dominant cases, although the
underlying mechanisms are different.

and (ii) among organisms which have diploid and haploid
stages in their life cycle, cooperation should be more com-
mon in the diploid stages than the haploid ones. Just a few
examples of altruism, cooperation or eusociality are known
among predominantly asexual taxa, particularly prokaryotes.
The renewed interest in the social life of microorganisms
might bring out a number of novel examples of cooperation
in bacteria"’. At this stage, therefore, the available data are
inadequate to test the first prediction quantitatively. Among
the well-known examples of sociality in microorganisms are
fruiting body formation in Myxobacteria and slime moulds.
In both the examples, cheaters have been shown to occur
frequently in natural populations (Watve, M. G., unpub-
lished)' . Sexual reproduction is not known in Myxobac-
teria, but is known to occur in Dicryosreliwnm. Studies on
sexual reproduction in Dictyostelium are scanty, but appa-
rently the ratio of cells sacrificed per spore produced is
much larger in sexual spore formation compared to asexual
spore formation'*. In basidiomycetes and ascomycetes, more
complex stages showing a greater degree of division of
labour among cells and a greater proportion of sterile cells
are diploid and the simpler stages haploid. These examples
fit well into the predictions of the model, qualitatively.
It is difficult to test the prediction quantitatively with
available data. However, the picture in hymenopterans is
clearcut, in that all cooperative stages are necessarily
diploid, while no haploid stage is known to cooperate.
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Another speculation arising out of the model is that
primitive multicellularity might have been similar to that
seen in cellular slime moulds, where polyclonal coopera-
tion could be inevitable. This might have been the right
situation for sex and cooperation to coevolve leading to an
association between multicellularity and sex. Such an asso-
ciation might have persisted in spite of the nature of
multicellularity as well as that of sex changing in the course
of evolution. As a result, the unicellular taxa are pre-
dominantly asexual and the multicellular ones have a
large proportion of sexually reproducing species.
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Fuzzy rule-based system for prediction
of direct action avalanches
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Rule-based systems are widely being used in decision
making, control systems and forecasting. In the real
world much of the knowledge is imprecise, uncertain,
ambiguous and inexact in nature. Fuzzy logic offers a
better way to represent complicated situations in terms
of simple natural language.

Here an attempt has been made to develop a rule-
base for prediction of direct action avalanches of
Chowkibal-Tangdhar road axis (Jammu and Kashmir)
in Indian Himalaya using fuzzy logic. The condition
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attributes of the rule-based system are six snow-rela-
ted parameters selected from the past dataset of the
representative observatory ‘Stage-II” in the axis. Diffe-
rent fuzzy sets are defined for each parameter on the
basis of their distribution with four danger labels of
avalanche activity.

A total of 101 composite rules are developed for
different danger labels of avalanche activity. The results
show good agreement with the danger classification
for avalanche activity and prediction of non-avalanche
activities.

THE predominantly used methods for forecasting avalanche
hazards are conventional techniques and statistical methods,
such as contributory factor analysis and nearest neigh-
bourhood techniquesl. Operational avalanche forecasting
based on the above methods is widely practised worldwide.
In India, Snow and Avalanche Study Establishment (SASE),
Manali is involved in snow and avalanche studies. For
avalanche prediction, snow and meteorological parameters
are categorized in three groupsz. The higher the class the
less relevance are the data for avalanche. Class I data deal
with snow stability information and are the most relevant
data. Class 11 data deal with snow-pit profile which has
secondary relevance, whereas Class I1I data are snow and
met parameters and bear indirect relevance to avalanche
formation. The techniques of artificial intelligence like
neural networks™® and expert system™® can be used in
addition to statistical techniques for better avalanche pre-
diction. The present work is a step forward to develop a
rule-based avalanche forecasting system using fuzzy logic.
This work focuses towards extracting rules for direct action
avalanches from the historic data of Stage II (Jammu and
Kashmir; J&K) observatory and implementing these in
expert shells.

The study area of the present work is the Chowkibal-
Tangdhar (CT) axis which is the only road connecting the
district of Tithwal with Kupwara, J&K (Figure 1); it falls

in the Lower Himalayan Zone’. It negotiates and crosses
the Pir Panjal range at Nastachun pass. A stretch of 36.18 km
is characterized by twenty-six registered avalanche sites.
This work gains importance on account of heavy pedestrian
traffic (approx. 3000 personnel per month) and their un-
avoidable interaction with avalanches.

This communication describes the classification of vari-
ables in different fuzzy sets and rule extraction for those
sets from the dataset to represent the rules in the expert
shell® "%, It further discusses the implementation and vali-
dation of these rules, performance of the system and possible
future improvements in the model.

Human thinking and reasoning frequently involve fuzzy
information originating from inherently inexact human
concepts and matching of similar rather than identical
experiences. In classical logic, truth-values of any informa-
tion are either 0 or 1, which falls under true/false duality.
In fuzzy logic truth is a matter of degree; thus true value
ranges between 0 and 1 in a continuous manner. The concept
of partial truth characterized by fuzziness has launched
the new theory of fuzzy sets, which yield a more accurate
mathematical representation of perception of truth than
that of crisp sets. Fuzziness occurs when the boundary of
a piece of information is not clear-cut. The representation
of such information is based on the concept of fuzzy set
theory'"™". Unlike classical set theory, membership of
an element to a set can be partial in fuzzy set theory, i.e.
an element belongs to a set with a certain grade of
membership. More formally, a fuzzy set 4 in a universe of
discourse U is characterized by a membership function
4 defined as:

Wyt U—[0,1]
that associates with each element x of U, a number [, (x) in

the interval [0,1], which represents the grade of member-
ship of x in the fuzzy set 4",

[ 5"

=

Figure 1.
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Avalanche sites of Chowkibal-Tangdhar axis.
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The schematic diagram of fuzzy rule-based system is
shown in Figure 2, which is composed of four components:
fuzzification module, fuzzy rule base, fuzzy inference
engine and defuzzification.

The fuzzification module maps the input numerical
parameter into different fuzzy sets of the linguistic terms
associated with that parameter. The membership function
defined for each fuzzy set is applied on the input parameter
to determine the degree of truth and rule premise.

In fuzzy rule base, knowledge acquisition is the main
concern of the building of the expert system. Knowledge
in the form of1 IF-THEN rules can be provided by experts
or can be extracted from data. Each rule has an antecedent
part and a consequent part. The antecedent part is the col-
lection of conditions connected by AND, OR, NOT logic
operators and the consequent part represents its action.

In fuzzy inference engine, the truth-value for the premise
of each rule is computed and applied to the conclusion part
of each rule. This results in one fuzzy subset being assigned
to each output variable for each rule. For composite rules
usually Min-Max inference technique is used.

Defuzzification is used to convert the fuzzy output sets to
a crisp value. The widely used methods for defuzzification
are centre of gravity and mean of maxima.

A direct-action avalanche is mainly due to the snow
loading of the slopes during a storm. For the present study
six relevant snow parameters'6 were considered for ana-
lysis from November to April of eight winters (1991-92
to 1997-98), recorded at 0830 and 1730 h daily. These
are directly observed and derived variables, viz. fresh
snowfall, 24-h fresh snowfall, 72-h fresh snowfall, snowfall

Actions [P {
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luference Rule
Eagine Base

Fuazzifieation

Canditions Module

—_————

Figure 2. General scheme of a fuzzy system.
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Figure 3. Distribution of 24 h fresh snowfall with avalanche activity.
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Table 1. Classification criteria of avalanche danger on the study area

Avalanche danger Frequency of avalanching

Low Less than 3 avalanche activities in the axis

Medium Between 3 and 7 avalanche activities in the axis

High Between 8 and 12 avalanche activities in the axis

All round More than 12 avalanche activities in the axis
Table 2. Nomenclature of terms used in the rule base

Terms Description

HN Fresh snowfall (cm)

HNF 24 h fresh snowfall (cm)

HNS 72 h fresh snow (cm)

SI Snowfall intensity (cm)

HS Standing snow (cm)

PS Free penetration (cm)

CONTRIBUTION Contribution towards avalanche activity

intensity, standing snow and free penetration. The data
are segregated for avalanche and non-avalanche activity
and avalanche day data are classified for different avalan-
che danger levels on the basis of avalanche frequency on
the CT axis on that day. Table 1 describes the criteria
adopted for the classification of avalanche danger into
four fuzzy sets, viz. low, medium, high and all round.

The distribution of each parameter against avalanche
activity was studied to extract the fuzzy sets associated
with that parameter. This association allows the formulation
of rules based on the influence of each fuzzy set of the
parameter considered for the study with avalanche danger.
Figure 3 depicts one example for the classification of 24-h
fresh snowfall with avalanche activity, which gives an
idea to formulate the fuzzy sets associated with it using
appropriate linguistic terms. Triangular membership func-
tions are used for defining the fuzzy sets. Figure 4 shows
the fuzzy sets associated with each parameter.

The main elements of the rule-based system are database,
a set of rules and an inference systemg’”’ls. The rules are
operated on the database. Each rule has an antecedent
condition that is either satisfied or not by the database. If
the antecedent part is satisfied, the rule is fired. The infe-
rence system chooses the fired rules to compute the aggre-
gate output of those rules.

Using fuzzy sets associated with each parameter, gene-
ral IF-THEN rules are developed for each danger label of
the avalanche. It is assumed that rules designed for ava-
lanche activity ideally do not fire for non-avalanche situa-
tions. The following examples show two rules for low
danger (refer to Table 2 for nomenclature of each parameter).

Rule # 1:

IF [HN] IS <HEAVY> AND [HNF] IS <MODERATE>
AND [HNS] 1S <LIGHT> AND [SI] IS <HIGH> AND
[HS]1S <SCATTERED> AND [PS] IS <MODERATE>
THEN [CONTRIBUTION] IS <LOW_DANGER>
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Rule # 4:

IF [HN] IS <LIGHT> AND [HNF] IS <LIGHT> AND
[HNS] IS <LIGHT> AND [SI] IS <LIGHT> AND [HS]
IS <MEDIUM> AND [PS] IS <LESS> THEN [CONTRI-
BUTION] IS <LOW_DANGER>

In Rule # 1 contributions of fresh snowfall, snowfall
intensity and free penetration are more towards low danger,
as these are classified as heavy, high and moderate res-
pectively, while the standing snow has less contribution
as it is scattered. Whereas for Rule # 4 the fresh snowfall,
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snowfall intensity and free penetration has less contribution
because these are classified as light, light and less res-
pectively, while the contribution of standing snow is more
as it is medium. In this way every parameter is analysed
for the development of the rule base. A total of 101 rules
were framed and fine-pruned for different danger labels
during the testing of the rule base.

For any situation, more than one rule may fire and give
its individual contribution towards avalanche danger; the
outcome of the fuzzy inference process is a fuzzy set of a
conclusion. The inference process uses Min-Max technique
to assess the final situation by taking care of all global
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Figure 4. Fuzzy sets for input and output parameters.
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contributions. For getting the appropriate crisp output, centre
of gravity defuzzification technique is used. The centre of
gravity is calculated by

[ ()
X =,
[ @

where J(x) is the output fuzzy set after the implication of
the rule and x is the centroid value of the fuzzy set.

One hundred and one manually designed rules were
implemented and tested using FULSOME expert shell,
developed by Department of Information Science, University
of Otago. The implemented rules were subjected to vali-
dation. These rules were modified, fine-tuned and pruned
by re-defining the rules or by modifying the fuzzy sets
and finally validated for running the rule base.

A total of 137 samples of test dataset, SO for avalanche
days and 87 for non-avalanche days were run on the rule-
based system. these samples were randomly selected from
the entire database of the Stage-11 observatory.

Figure 5 gives a comparison between the observed and
model-predicated avalanche activities. Table 3 summarizes
the results of the rule-based system for avalanche days.
The results show that the rule-based system could predict
with a reasonable accuracy of 61% for low danger cases,
58% for medium danger cases, 80% for high danger cases
and 100% for all-round danger cases. Some days were
without prediction: 28% for low danger cases, 17% for
medium danger and 20% for high danger cases. This attri-
butes to limitations in the decision making process due to
incorrect assessment of rules. Further pruning of the rule
base is needed for more accurate classification.

Table 3. Results of rule base for direct action avalanches

Low danger case = 18
Low Medium High All round No prediction
11 2 - - 5

Medium danger case = 24

Low Medium High All round No prediction
4 14 2 - 4

High danger case = 5
Low Medium High All round No prediction
- - 4 - 1

All round danger case = 3

Low Medium High All round No prediction
_ _ _ 3 _
Table 4. Results of rule base for non-avalanche days

Non-avalanche days — 87

No Low Medium High All round
prediction
67 15 5 - _
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A considerable number of cases were mis-classified; 11%
cases of low danger were classified as medium danger
cases, 17% cases of medium danger were classified as
low danger cases and 8% as high danger cases. For high
and all round cases, there is no such mis-classification
observed. A reexamination and fine-tuning of rules required
to yield better results.

Figure 6 depicts the comparison between the observed
and model-accessed non-avalanche activities. Table 4 shows
that for 77% cases there is no prediction because for such
cases, no rule is fired and it is assumed a correct predic-
tion for non-avalanche days. But 17% cases are classified
as low danger and 6% cases are classified as medium
danger. It is found that when non-avalanche days are pre-
dicted as avalanche days, some of the rules for avalanche
danger were fired due to the situation prevailing for ava-
lanche activity during that time. For such cases it is found
that most of the avalanches either triggered during the
period or the situation is likely for an avalanche activity
in the future.

Figure 7 shows the distribution of avalanche activity
when a non-avalanche day is predicted with avalanche
danger. In 27% cases, avalanche activity was observed on
the same day between the last observation and the current
observation. In 17% cases avalanche activity was observed
one day before with respect to current observation and
the situation was still critical for avalanche activity. Only
6% cases were obtained when avalanche activity was
observed two days before the current situation. Eleven
per cent avalanche activities were observed the day after

[ —e—aclaL & PREDCTON |

avalanche

sséitipriabiiiyi

b g

5 2 g 3 8 g g 5 g g g ¥ L
days
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Figure 7. Distribution of avalanche activity observed when a non-
avalanche day is predicted with avalanche danger.

the current prediction and 22% avalanche activities were
observed in next two days after the current prediction,
irrespective of other factors. In 17% cases no avalanche
was observed within two days from the prediction.

These results show that the rule base developed for ava-
lanche danger is also applicable to non-avalanche activity.

Using artificial intelligence techniques with numerical
techniques can provide better results for avalanche predic-
tion. This work is an attempt to use fuzzy logic for predict-
ing avalanches with various danger labels. The work is
focused on rule extraction for the direct action avalanches
of the CT axis in J&K, for which six snow parameters are
considered. A total of 101 rules were framed using the
fuzzy logic theory, which analyse the data and asserts the
danger label of direct action avalanches.

The result shows reasonably accurate classification for
avalanche danger and also prediction of non-avalanche
cases; but fine-tuning of the rule base is needed for better
classification of the non-avalanche days and avalanche
danger. Further investigations are required for using other
parameters to predict all types of avalanches other than
direct action avalanches. An in-depth data analysis is
required to incorporate snow-profile data, temperature and
wind data for the development of a complete rule base to
predict non-avalanche activity and avalanche activity with
different danger labels.
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Breakdown of synthetic potassic
cordierite at low P-T conditions

A. V. Ganesha*, B. Basavalingu, J. A. K. Tareen
and M. A. Pasha

Department of Geology, University of Mysore, Manasagangotri,
Mysore 570 006, India

An experimental study on the breakdown of K-cordi-
erite into phlogopite and Mg-cordierite has been con-
ducted at 100-150 MPa and in the temperature range
of 650-900°C under hydrothermal conditions. Potassic
cordierite served as starting material and was prepared
by sintering the co-precipitated gel of composition K, ,
Mg,Al,,Si, 305 at 1200°C. All the experimental runs
were carried out using Tuttle—Roy hydrothermal reactor
vessels. The formation of phlogopite along with Mg-
cordierite started at 700°C. This phlogopite with Mg-
cordierite persisted up to 825°C and the phlogopite pro-
portion considerably reduces beyond 825°C. At 850°C,
Mg-cordierite was the only prominent phase with minor
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