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How effective is an extended Kalman
filter for continuous yeast cultures
affected by both inflow and
measurement noise?
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The usefulness of the extended Kalman filter (EKF) as
an on-line estimator of process variables is known for
monotonic laboratory-scale fermentations. However,
this has not been tested for oscillating cultures under
non-ideal conditions representative of large bioreac-
tors. So, in this study an EKF was applied for on-line
filtering of simulated data of an oscillating continuous
Saccharomyces cerevisiae culture with inflow and meas-
urement noise. For better accuracy, the tuning of the
EKF was updated over successive time slices such that
deviations between the noise-affected and noise-free
profiles were minimized during each interval. As shown
by the concentrations of biomass and ethanol, noise
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disrupted periodicity in both, but oscillations close to
the noise-free behaviour could be restored substan-
tially by the EKF, thus suggesting its suitability for
large non-ideal bioreactors with either monotonic or
oscillating cultures.

MICROBIAL fermentations operated under production
conditions are often subject to noise from two sources.
One source is broadly the group of sensory devices for
different concentrations, temperature, pH, etc. Each of
these devices has a separate measurement noise, but for
modelling and control they are conveniently grouped into
one vector with, as explained later, one covariance matrix
for the noises. The other source is the environment, and
this noise usually enters through a feed stream. Obvi-
ously, therefore, batch fermentations are less susceptible
to this kind of noise, but they are not totally insulated
from environmental effects because of variables such as
the stirrer speed and pH control by the dosing of an alkali
or an acid. By comparison, continuous and fed-batch
fermentations are directly under the influence of environ-
mental variations. Nevertheless, many microbial cultiva-
tions are carried out in fed-batch or continuous mode
because of economic, kinetic or physiological benefits'?.
For such fermentations, suitable filtering of noise-
affected data is at the core of any control strategy.

The Kalman filter is possibly the most widely used
technique to generate smooth, usable data from noise-
affected measurements. Since its theory is well docu-
mented’, only a brief outline is provided later for com-
pleteness. Applications of the Kalman filter to microbial
processes have been mainly for on-line estimations of
variables that are difficult or expensive to measure on-line
and whose off-line estimations are time-consuming™®®. Al-
though production-scale operations are more prone to dis-
turbances, ironically most studies with Kalman filters
have focused on more ‘ideal’ laboratory-scale fermenta-
tions. However, these applications span different organ-
isms, objectives, modes of operation and the variables
monitored. The early work has been reviewed by Lubbert
and Simutis®, who pointed out both the potential and
some weaknesses of the Kalman filter; these were addres-
sed by later studies.

The variety of later applications is apparent from the
observation that Neeleman and co-workers™® used the
Kalman filter to estimate the respiratory coefficients and
specific growth rates of insect cell cultures; Zhang and
Su’ employed it for intracellular protein estimations in
plant cell cultures, and Simon'® for the removal of noise
from measurements of polychlorinated biphenol degrada-
tion by bacterial co-cultures. Holwill et al.'' also focused
on proteins, in particular the estimation of the fractional
precipitation of alcohol dehydrogenase from clarified
yeast homogenate. This variety is extended further by the
work of Vargas et al.’? with waste-water treatment; their
interest was in developing a time-optimal control system.
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While establishing the effectiveness of the Kalman fil-
ter for bioreactors, these studies (with the exception of
Simon'®) were also restricted to laboratory-scale vessels
operated under reasonably ideal conditions that did not
truly mimic real production-scale processes. An impor-
tant feature that ‘non-idealizes’ large-scale fermentations
is the incursion of disturbances or noise. They usually en-
ter through an inlet stream, and therefore fed-batch and
continuous cultivations are more susceptible to process
noise than batch operations. However, both modes of ope-
ration can be affected by measurement noise, which is a
feature of the measuring instrument rather than that of the
biological process. While intelligently controlled noise
can be beneficial to a microbial culture, uncontrolled or
improperly controlled noise can be seriously detrimental.
For instance, noise can drive a fermentation from mono-
tonic to chaotic behaviour or initiate run-away behaviour
from a stable performance'” ",

Despite its prevalence and the fact that noise can have
more damaging effects on cellular processes than on
chemical processes, recognition and quantitative analyses
of the effects of noise on microbial processes are of re-
cent origin. Nevertheless, now it has been established that
disturbances flowing from the environment can seriously
undermine cell viability, reactor stability, productivity
and selectivity'*'®. These studies cover different micro-
organisms and different bioreactor operating modes, and
thus indicate a general validity of the injurious effects of
noise. However, they all cover fermentations whose
noise-free profiles change monotonically with time. While
such fermentations include many important examples,
they do not include an important class of fermentation
which displays steady oscillations in continuous cultures.
Perhaps the best known of these are Zymomomas mobilis
and Saccharomyces cerevisiae, both of which generate
ethanol.

Oscillating cultures exhibit a rich variety of perform-
ances, depending on the operating conditions. Both regu-
lar and aperiodic oscillations are possible, chaotic
behaviour and, under restricted conditions, monotonic
profiles too are observed!”!®, Thus, the role of noise in
such cultures is both difficult and important to under-
stand. It is difficult because noise can cause abrupt shifts
in the nature of the fermentation, and it is important be-
cause, as previous work with monotonic fermentations
has shown'*'”, harnessing the noise suitably can improve
cell growth and productivity beyond that of a noise-free
fermentation. So the effectiveness of a Kalman filter in
modulating noise arising simultaneously from the feed
stream and the measuring devices for an oscillating con-
tinuous fermentation has been investigated in this work.

Many biological processes exhibit temporal oscilla-
tions under certain conditions. Yeast glycolysis'®, the cir-
cadian rhythm® and the cell cycle’' have been widely
studied. Equally important but less intensively analysed
are metabolic oscillations seen in continuous cultures

CURRENT SCIENCE, VOL. 86, NO. 7, 10 APRIL 2004



RESEARCH COMMUNICATIONS

of some bacteria (Z. mobilis)22 and yeasts (S. cerevi-
siae)”.

From the perspective of both molecular genetics and
industrial fermentation, S. cerevisiae is an important or-
ganism because (a) its biochemistry and physiology are
well understood, (b) noninvasive methods of measure-
ment are possible in continuous cultures, (c¢) it does not
generate endotoxins, and (d) it is a source of many useful
products. These aspects and the mechanisms and models
for oscillatory behaviour have been reviewed recently™.

Oscillations in continuous cultures of S. cerevisiae
have been reported with different carbon sources (glu-
cose, ethanol or acetaldehyde) and different operating
conditions, notably the dilution rate and gas—liquid mass
transfer rate. Both intracellular reactions and transport
between the cells and the surrounding fluid contribute to
oscillatory behaviour. Because their interactions are
complex and not fully understood, models have either
focused on the intracellular kinetics or combined trans-
port equations with lumped kinetics. The latter approach
is a more sensible compromise than ignoring transport
effects, especially since the latter can be significant in
large bioreactors'.

This study and a preceding one™ are based on a cyber-
netic model proposed by Jones and Kompala'®. This
model was preferred over others for a few reasons. First,
the cybernetic approach formalizes the established evolu-
tionary concept that microorganisms try to follow those
metabolic pathways that are most favourable to their sur-
vival under the prevailing conditions. Secondly, it has
greater physiological closeness, it is simpler than mecha-
nistic models of comparable accuracy and it portrays
most of the observed features. Thirdly, the Jones—Kompala
model has been able to explain excursions between diffe-
rent patterns of oscillations as a consequence of changes
in operating conditions or substrate composition or gene-
tic manipulation, which many mechanistic models have
struggled to elucidate.

Briefly, Jones and Kompala'® identified three meta-
bolic pathways by which S. cerevisiae may utilize the
available carbon sources: glucose fermentation, ethanol
oxidation and glucose oxidation. The choice of pathway
depends on the culture conditions, primarily the dilution
rate, dissolved oxygen concentration and gas—liquid mass
transfer rate. Although ethanol is synthesized under an-
aerobic conditions in batch cultures, it can be formed in
certain ranges of the dissolved oxygen concentration and
mass transfer rate in oscillating continuous cultures™. In
the cybernetic framework, the organism chooses the path-
way that is most favourable to its survival. So, it may shift
from one pathway to another under changing conditions,
and Jones and Kompala' postulated that that dynamic
competition among the pathways is the main cause of oscil-
lations. Their model is summarized in the Appendix.

The Kalman filter is a set of mathematical equations
that provide an efficient recursive solution of the least-
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squares type. The filter can provide estimations of past,
present and future states of a system even when a precise
model is not known. This feature is useful for microbial
processes under non-ideal (realistic) conditions because
models developed on laboratory data may become inap-
plicable or imprecise under the influence of disturbances
and spatial gradients'?.

The basic Kalman filter addresses the problem of try-
ing to estimate the state x of a discrete time-controlled
process that is governed by the linear difference equation:

X = AXg ) + Bigg + Wiy, (D
with a measurement vector that follows:
Zp = Hx + oy 2)

In these and later equations, lower-case letters with over-
bars denote vectors, while similar capital letters denote
matrices. Scalars do not have overbars. (k- 1) is the cur-
rent instant of time and k is the point one time-step ahead.
wy and v, represent the process noise and measurement
noise respectively.

Previous studies”®® show that w; and o, may be repre-
sented as white noise with normal probability distribu-
tions:

6-28

p(w) ~ N, Q), 3)
p(e) ~ NO, R), @)

where Q and R are the respective covariance matrices.
Since eq. (1) applies to linear equations whereas many
fermenation (and other biological) processes follow
nonlinear models, the extended Kalman filter (EKF) was
developed. It applies to any nonlinear difference equation
of the form:

Xe = f (K1, e, Wie)s (5)
% = h(Zs 90). ©)

In principle, the EKF solves the problem of determining
the current estimates of a set of variables by expressing
them as linear functions centred around the partial deri-
vatives of the process and measurement functions evalu-
ated at the (known) previous instant of time. The detailed
theory and equations are given in the literature®”. Note
that both eqgs (1) and (2) and eqs (5) and (6), in pairs, are
in discrete form, whereas most biological processes are
described by continuous models. This is not an impedi-
ment because, in practice, data are sampled at discrete
points in time. Since the EKF allows any arbitrary varia-
tion in the sampling interval, this may be varied accord-
ing to the nature of the process. For instance, the interval
may be made inversely proportional to the current con-
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centration gradient, thus generating closely spaced data
when the variations are steep and more widely separated
points during mild variations',

Barlier studies®'*'®”* have suggested that the feed
stream is a major carrier of noise in continuous and fed-
batch fermentations, and white noise is the principal
component of the observed fluctuations. So, to generate
data simulating a noise-influenced oscillating culture, the
equations in the Appendix were solved with the parame-
ter values used by Jones and Kompala'® (see Table 1) and
white noise specified by O and R. In an experimental ap-
plication, the measurement covariance R is usually meas-
ured prior to the operation of the filter since it relates to
the filter and not the process. The process noise covari-
ance @ is more difficult to determine, since typically we
do not have the ability to observe the process we are esti-
mating. So, based on previous studiess’10’29’30, Q was set
initially to Qg = ([0.0001 ... 0.00011%) and R to 0.0031,
where I is the identity matrix and Qg is a diagonal
matrix. Now, the model of Jones and Kompala'® has eight
concentrations whose rates of change are expressed by eqs
(A6)—(A1l) in the Appendix. So R is an (8*8) matrix.
Since the glucose and oxygen feed-streams are the only
inflows to the bioreactor, environmental noise was con-
sidered to be present in these two flow rates, thus making
Q a (2*2) matrix. Both Q and R get updated recursively
as shown in Figure 1.

Apart from its applicability to nonlinear process, an
important distinction between the EKF and the basic dis-

Table 1. Values of palrametelrs18
Parameter Units Value
o h' 1.0
a* gh™ 0.1
B h' 0.2
N gy 6.0
T2 g’ 6.0
46 g’ 0.3
LU max h' 0.44
2 max h' 0.32
s, max h' 0.31
o gz’ 0.27
0, gg” 1.067
03 gg” 2.087
[0 gg’! 0.95
D h! 0.16
Gy gl 28.0
kia h' 1200.0
K, gl 0.1
K, gl 0.02
K gl 0.001
Ko2 mg 1! 0.0001
Kos mg 1! 0.0001
o mg 1™ 7.5
Y gg” 0.16
Y, gg” 0.74
Y3 gz’ 0.50
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crete Kalman filter is that in the former case the Jacobian
H,, in the equation for the Kalman gain K, also gets up-
dated with each iteration, thereby speeding up conver-
gence and improving the accuracy of estimations. For
better filtering effectiveness, the duration of fermentation
was divided into 1 h intervals and the tuning of the EKF
was updated progressively over successive intervals.

The effects of noise and filtering are portrayed here
through the concentrations of two key variables: biomass
and ethanol. These variables were chosen because: (a)
their magnitudes and amplitudes of oscillation are much
larger than those of the other concentrations'® and (b) cul-
tivation processes generally try to maximize the producti-
vity of these two variables.

S. cerevisiae also synthesizes and consumes internal
storage carbohydrates, principally glycogen, trehalose and
mannan®>*!, In the work of Jones and Kompalals, the car-
bohydrate concentration oscillated at an amplitude com-
parable to that of ethanol and at the same frequency. So
the effect of noise on carbohydrate concentration was
similar to that on ethanol, and hence only the ethanol pro-
files have been displayed. However, both are discussed in
the context of the effect of noise on the metabolism and
control of the process.

Figure 1 shows that there are two stages in the func-
tioning of an EKF: initial a priori estimates are corrected
by a posteriori estimates. In the present application, the a
priori values pertained to pre-filtered noisy data and the
corrected values were the result of filtering. The duration
of fermentation represented in the study by Jones and
Kompala'®, 50 to 76 h from the start, was divided into 26
one-hour intervals. During each interval the values of the
covariances Q and R were determined such that the aver-
age deviation between the noise-affected and noise-free
profiles was minimized. Since the concentrations at the
end of each time slice depend on the (optimum) values of
the previous interval, the feedback loop in Figure 1 is
completed. This Markovian strategy not only conforms to
the EKF theory but also has biological support, since its
effectiveness has been demonstrated in other applica-
tions #1632

The extent of distortion of the concentration profiles is
evident from Figure 2 a and b. Constancy of both ampli-
tude and cycle time are disrupted by noise, and smooth
oscillations degenerate to random multi-modal fluctua-
tions. It is also seen that the biomass is more severely af-
fected than ethanol concentration. These differences have
important implications metabolically and for reactor con-
trol. Studies by different groups®>'*> have shown that
the synthesis of biomass, ethanol and carbohydrates var-
ies at different rates across the S, G1, G2 and M phases,
but no consistent pattern seems to have been determined.
Based on the work by Kuenzi and Fiechter34, Jones and
Kompala'® have stated that S. cerevisiae stores carbohy-
drates when the medium is deficient in glucose and etha-
nol, and consumes the surplus carbohydrates when either

CURRENT SCIENCE, VOL. 86, NO. 7, 10 APRIL 2004
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Time update (‘Predict’)

1. Project the state ahead

X =f Gocrs i, 0)

Measurement update (‘Correct’)

1. Compute the Kalman gain
Ky = PAH(HPH + ViR VD)

2. Update the estimate with measurement z;

2. Project the error covariance ahead |

Py = AP A+ WiQi Wi

!

Initial estimates for £;_; and Py,

Figure 1.
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Computation procedure of the extended Kalman filter.
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Figure 2. Time-domain profiles of (a) cell mass concentration and (b) ethanol concentration without noise and with noise.

substrate is present in large concentrations. Experiments
by Duboc er al.’' indicated a somewhat different infer-
ence. Biomass synthesis rate was high and ethanol syn-
thesis low in all phases except the S phase, but
carbohydrate synthesis was fast only in the G1 phase.
Moreover, carbohydrates were consumed only in the Gl
phase, whereas according to Jones and Kompala'®, there
should have been some consumption in all phases, al-
though at different rates.

Differences have also been observed between the syn-
thesis and utilization rates of different carbohydrates.
However, because of the lack of sufficient kinetic data for
the individual constituents, it has not been possible to
propose models for each of them and study the effect of
noise. Nevertheless, it may be useful to note that glyco-
gen, which constitutes the largest fraction of the carbohy-
drates, follows the same pattern as the biomass, whereas
other carbohydrates and proteins do not”'. The complex-
ity of such variations, even without noise, requires sen-
sory and control methods that are versatile, sensitive,
fast, robust and ‘intelligent’. Off-line measurements can
be too slow to provide data for timely updating and correc-
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tive action, while on-line methods may be too expensive
for production applications®. In such situations, knowl-
edge-based methods, utilizing expert systems, neural net-
works and genetic algorithms meet these requirements
much better than off-line sensors and PID-based control
methods™>°.

The effect of introducing an EKF is revealed in Figure
3 a and b. Since the actual profiles of the concentrations
have been shown in Figure 2 ¢ and b, the percentage devia-
tions are now more informative. Corresponding to the
smaller extent of distortion by noise for ethanol concen-
tration than for biomass, the extent of improvement pro-
duced by the EKF is also larger for ethanol. What is
visually apparent from Figure 3 ¢ and b may be quantita-
tively characterized by defining a filtering index (FI):

M
FI=
i=1
(% deviation without filter); — (% deviation with filter);

(% deviation without filter),

s

)
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Figure 3.

concentration) without and with an extended Kalman filter.

Table 2. Pearson’s product moment correlation coefficients

Biomass Ethanol Biomass Ethanol

(unfiltered) (unfiltered) (filtered) (filtered)
Biomass (unfiltered) 1.0 0.166 0.999 0.122
Ethanol (unfiltered) - 1.0 0.162 0.984
Biomass (filtered) - - 1.0 0.122

where M is the number of datapoints. In this study, M
was 26. The calculated values of FI were 0.563 for etha-
nol and 0.338 for biomass. The values may be improved
by employing (a) shorter time intervals, (b) two or more
filters in series or (¢) a combination of an EKF and a
knowledge-based device™, However, each of these meth-
ods increases the computation effort, and consequently
the response time at each stage. So the choice of the best
filtering technique rests on a balance between the im-
provement achieved and the effort required'*’’; this as-
pect is under investigation. At the theoretical limit of a
perfect filter, the noise-free performance should be fully
recovered and hence FI — 1.

To determine whether the deviations without and with
an EKF were correlated, Pearson’s product moment cor-
relations and scatter diagrams were computed as described
by Fisher’®. The correlation between two noise-influen-
ced variables X and Y is defined as:

D, = cov (X,Y) ’ )
var (X)var (Y)

where var stands for variance and cov for covariance. The

correlation coefficients (Table 2) show that, as expected,

noise-induced deviations in the concentrations of biomass

and ethanol are not correlated (small coefficients), whereas

each is strongly correlated with itself.

1004

60

— Without filter b
— — With filter

Ethanol concentration deviation (%)

60 I I I I 1
50 55 60 65 70 75 80

Time (h)

Variation in the deviation of noise-affected concentration of (@) biomass and (b) ethanol (from the noise-free

a o ||b ® || o °
o o &
o %)ée@ f °© gog
0
80&30 @0 g §°
o o0 0 o © o°&®
o o © o
ol [e o o o
d o ° @O S o o
o o) o®d
o Lo ] od’go
o 8 o Po°
58 5 5
o o o
fo) le) %) (e} 0&

Figure 4. Scatter diagrams portraying the relation between the devia-
tions of pairs of variables at different times. Abscissae and ordinates
correspond to the following variables: a, XU, EU; b, XU, XF; ¢, XU,
EF; d, XF, EF; e, EU, EF; f, XF, EU; XU, Unfiltered biomass; XF, Fil-
tered biomass; EU, Unfiltered ethanol; EF, Filtered ethanol.

Whereas correlation coefficients present an overall pic-
ture, detailed variations in the correlation between the
concentrations at each of the 26 sampled points are por-
trayed in the scatter diagrams (Figure 4). Each set of points
relates the deviations caused by noise (without or with
filtering) for one viable with another. For instance, Figure
4 a relates unfiltered biomass concentration with unfil-
tered ethanol concentration. As expected, the points are
randomly scattered here and in Figure 4 ¢, d, and £, all re-
lating biomass and ethanol concentrations under different
conditions. These random distributions translate to the
small correlation coefficients in Table 2. On the contrary,
the deviations for the same variable without and with an
EKF (Figure 4 b and e) are distributed linearly, indicating
a strong correlation at all times, reflected in the large co-
efficients in Table 2.
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The EKF has been shown in previous studies to be a
useful on-line estimator of state variables for nonlinear
fermentation processes. However, those processes were
relatively ‘ideal’ in that there was minimum external
noise (mainly because of the small scale of operation and
elaborate controls) and the disturbances were mainly in
the measurement procedure.

To evaluate the useful of an EKF in more difficult (and
realistic) situations, this study considered an oscillating
continuous fermentation with noise in both the feed
stream and the measuring devices. Using an experimen-
tally established cybernetic model for the continuous culti-
vation of S. cerevisiae in a noise-free bioreactor,
computer-generated white noise was introduced in the
feed stream and in the sensors for the performance vari-
ables by suitable covariance matrices, and the modified
model was solved to generate data mimicking a large-
scale, noise-affected fermentation.

Noise destroyed the smooth periodic variations in the
concentrations of the biomass and the product ethanol.
An EKF was employed to filter out the noise and recover
the deterministic performance. Based on previous work,
the EKF was tuned stepwise over successive slices of
time covering the duration of fermentation. The noise-
free, smooth oscillations were substantially recovered with
an EKF, but there were differences in the extent of recov-
ery for the two concentrations. The less affected concen-
tration of ethanol was also recovered to a larger extent.
Further improvements are possible, but they can slow
down the response times.

Since this was a simulated experiment, randomness of
the noise-induced displacements without and with an
EKF was cross-checked by Pearson’s correlation coeffi-
cients and scatter plots. Both showed, as expected, that
displacements in the concentrations of ethanol and bio-
mass were uncorrelated, whereas those for the same vari-
able (without and with filtering) were strongly correlated.
In summary, therefore, this study shows that an EKF can
be an effective noise filter and state estimator in realistic
conditions for complex fermentation processes.

Appendix

The cybernetic model of Jones and Kompala'®

Depending on the prevailing conditions, S. cerevisiae
may follow any one of three metabolic pathways. The
rate of growth r; along each pathway follows modified
Monod kinetics, as given below.

Glucose fermentation

n=Wne|——-» (A1)

K +G
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Ethanol oxidation

E (0]
1 = Wse, (A2)
K, +E || Kp, +0
Glucose oxidation
G (0]
r3 = Uses (A3)
Kis+G || Koz +0

The pathways are not mutually exclusive and at a given
instant, the organism may follow two or more pathways
at different rates. Each pathway is controlled by a key en-
zyme e¢;, with synthesis rate u; and activity v;, which fol-
low:

Uy =, (A4)
L
J
v = (A5)
man I"j

With egqs (A1)-(A5), the mass balances for a continuous
flow bioreactor may be written as follows:

dX

o= Llm)-D X, (A6)

d_G:(GO_G)D_ | 1373 X -0, c3X , y4¢ i

dr f 3 dr dr

(A7)

dE

— =—DE+ (Plﬂ—ﬂ X, (A8)

dr Y, Y,

do * 2% 7o

—=k;a(0"—0)—| ¢, 22+, 22 |X, (A9)

de > Y,

de; S,

Lo | —2 |- - o

| ;(rjvj)-i-f) e+ ¥, (AL0)

dc

3273”3”3_(71”17’1+72”2”2)C—Z(”j7’j)c (A1)
J

Inclusion of the term o* in the enzyme synthesis equa-
tions (A10) is based on Turner and Ramkrishna®, who
have shown its importance in predicting the induction of
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enzymes that have been repressed for long durations. The
specific growth rates thus also include o/* in the model:

(A12)

Equation (A11) expresses the rate of change of internal
storage carbohydrates that are an integral part of the me-
tabolism*>’".

The @; are stoichiometric coefficients for different sub-
strates S;, and ; are similar coefficients for carbohydrate
synthesis and consumption by the cells. Jones and Kom-
pala'® may be consulted for a full discussion of the
model. A point not clarified there is the identification of
S1, S2 and S5. Reference to eqs (A1)-(A3) shows that
S1=G, S, =FE and S3 = G. This identification is needed to
solve the model. The values of the parameters are listed
in Table 1.

Nomenclature

C = Intracellular storage carbohydrate concentra-

tion (g 1)

D = Dilution rate (h™")

€ = Key enzyme concentration for ith pathway
(g g”' biomass)

E = Ethanol concentration in the bioreactor (g 1’1)

G = Glucose concentration in the bioreactor (g 1’1)

Go = Glucose concentration in the feed stream
g1™h

kra Oxygen mass transfer coefficient (h™')

K = Michaelis constant for ith pathway (g 1")

Ko, Kos= Oxidative pathway oxygen saturation con-
stants (mg 1’1)

o = Dissolved oxygen concentration in the bioreac-
tor (mg 1’1)

o* = Dissolved oxygen solubility limit (mg 1"

7 = Biomass growth rate on ith pathway (h™")

S = Carbon substrate concentration for ith path-
way (g 1)

t = Elapsed time (h)

u; = Cybernetic variable controlling key enzyme
synthesis for ith pathway (-)

Vi = Cybernetic variable controlling key enzyme
activity for ith pathway (-)

X = Biomass concentration in the bioreactor
g1™h

Y: = Yield coefficient for ith pathway (g biomass g
substrate)

o = Specific enzyme synthesis rate (h™')

o* = Constitutive enzyme synthesis rate (g h™')

B = Specific enzyme degradation rate (h™")

®; = Stoichiometric coefficient for ith carbon sub-

strate (-)
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expression of AmphiCypA, a homologue
of eukaryotic cyclophilin A gene from
amphioxus Branchiostoma belcheri
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This study reports the cloning and characterization of
a full-length amphioxus cyclophilin ¢cDNA. The ¢cDNA
consisted of 1358 bp with a 495-bp open reading frame
(OREF) corresponding to a deduced protein of 164 amino
acids, with a calculated molecular mass of 17.3 kDa. It
possesses the signature sequence of Cyclophilins (Cyps)
in the PROSITE library, and all the conserved 13
amino acids, including the crucial tryptophan (W)
residue (position 121) that are predicted to be invol-
ved in PPlase activity and CsA binding. In addition, it
has neither N-terminal extension sequence nor C-termi-
nal extension sequence. These indicate that the cDNA
encodes a homologue of eukaryotic cyclophilin A, des-
ignated as AmphiCypA. Phylogenetic analysis shows that
AmphiCypA is intermediate between sea urchin Cyp
and zebrafish Cyp, clustering together with zebrafish
Cyp. This agrees with the notion that amphioxus repre-
sents a basal lineage of chordates in phylogeny.
Northern blot analysis revealed that AmphiCypA is
expressed in all the tissues examined, but its expres-
sion is apparently elevated in fully-grown ovaries. It is
suggested that elevated expression of AmphiCypA in
fully-grown ovaries could be due to a role for this pro-
tein in oogenesis or it may be involved in early deve-
lopment.

CycLoPHILINS (Cyps) are a family of proteins that bind
to the immunosuppressive agent, cyclosporin A (CsA), via
a central highly conserved CsA-binding domain'”. Bio-
chemical studies have shown that Cyps have peptidyl-
prolyl cis—trans isomerase (PPlase: EC 5.2.1.8) acti-
vity*’. Their biological significance is manifested by the
catalysis of protein folding via peptide bond rotation on
the amino side of proline residues®’, the action as a chap-
erone for protein trafficking®, the nucleolytic degradation
of the genome’ as well as the involvement in stress res-
ponselo’“.

The first identified cyclophilin was human CypA, an
18-kDa soluble cytoplasmic protein'’. To date, divergent
types of Cyps have been identified on the basis of their
size and target location. For example, in addition to CypA,
at least four other types of Cyps have been characterized
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