Astronomical research in India: III

Astronomy makes an instinctive appeal to all cultured persons. Of a different nature is the interest it has for the physicist. As indicated in an earlier article, the observational discoveries of astronomy have had a profound influence on physical thought. Vice versa, the speculatively-minded physicist turns naturally to the facts of astronomy to find in them a confirmation of his ideas or at least some support for them. This inter-play between astronomy and physics has been vastly more active during the last thirty years, since Niels Bohr put forward his Keplerian model of the hydrogen atom and offered an intelligible explanation of the observed spectra of both terrestrial and astronomical sources of light. The influence of Bohr’s theory of atomic structure on astronomical and astrophysical research has indeed been no less remarkable than its influence on the sciences of physics and chemistry. The interpretation of the spectra of the sun, the stars, of the nebulae, of inter-stellar clouds, and nearer to us, the spectra of the major planets and of the comets has been notably advanced and aided by the simultaneous advance in our knowledge of the structure of atoms and molecules and by laboratory investigations on the light emitted or absorbed by them under various conditions. The more recent advances in our knowledge of the structure of atomic nuclei and of their transmutations has similarly exercised a profound influence on speculative astronomy, and stimulated discussion on the internal constitution of the stars and the origin of the vast outpouring of energy from them which we witness daily. The work of the astronomical theorist on these problems has necessarily to be based on the results of terrestrial experimentation and on such inferences from them as are justified by established physical principles having the widest generality. Such work has a claim to acceptance which would not be extended to ad hoc hypotheses and speculations having no solid basis of experience behind them.

It is not surprising that the general advance of scientific activity in India during the past thirty years has been accompanied by an increased interest on the part of Indian physicists and mathematicians in the problems of astronomy, astrophysics and cosmology. The contributions by these sciences have not passed unheeded by the professional astronomers in other countries. Indeed, it may be claimed without exaggeration that the influence of Indian work in this field has been surprisingly great in proportion either to its volume or the actual effort put into it.

Though not actually “made in India”, the work of S. Chandrasekhar, now Professor of Astrophysics at Chicago University, has a claim to notice in an article on astronomical research in India, if only as an indication of what could be accomplished in this country under favourable conditions. It would require an entire number of Current Science and not a paragraph or two to sketch the many fields of astronomical and astrophysical research traversed by Chandrasekhar and the results obtained by him during the last fifteen years. The Monthly Notices of the Royal Astronomical Society during the years Chandrasekhar was at Cambridge, and the last ten volumes of the Astrophysical Journal since he went to the United States bear witness to his energy, the strength and range of his scientific interests and his powers of investigation and exposition. His two treatises on “Stellar Structure” and “Dynamics of Stellar Systems” published by the Chicago University Press make his work in the respective fields conveniently accessible to specialist and non-specialist alike. A memoir on “Stochastic Problems in Physics and Astronomy” which appeared as the January 1943 issue of the Reviews of Modern Physics establishes links between the problems of stellar astronomy and those arising in colloid chemistry, and is a very remarkable effort in scientific synthesis.

In concluding this series of articles, the writer ventures to express the hope that they will not altogether fail to accomplish their purpose, namely that of impressing on all those interested in the scientific and cultural progress of India, the need for making generous provision for the promotion of astronomical study and research in our country, of encouraging those who are interested in the subject, and of making it possible for Indians working in their own country to contribute to its progress.

C. V. RAMAN

Erratum

Slow pace of engineering education reforms


Table 3 reproduces the number of Ph D in engineering awarded by major institutions during 1992–1995 (Source: AICTE Report on “Reshaping of post-graduate education”). In this table, against IISc, Bangalore, the number of Ph D’s indicated is 65. We have got our records checked and we find that there is a typographical error; it should be 265.

M. L. Munjal, IISc., Bangalore

I would like to place on record and clarify that the statistics in question was taken from the report ‘Reshaping Post-graduate Education and Research in Engineering and Technology’, AICTE, 1999, page 89, table 3.15. This table states the total number of Ph D awarded for the period 1992–1995 to IISc, Bangalore as 65. This being a report of the AICTE, the article reproduced the statistics as given in the report. I thank Dr Munjal for bringing the error to my attention.

Nirupa Sen

Attention is drawn to a letter on p. 890 of this issue which highlights errors in S&T databases.

Editor